首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop the non-informative priors for the inverse Weibull model when the parameters of interest are the scale and the shape parameters. We develop the first-order and the second-order matching priors for both parameters. For the scale parameter, we reveal that the second-order matching prior is not a highest posterior density (HPD) matching prior, does not match the alternative coverage probabilities up to the second order and is not a cumulative distribution function (CDF) matching prior. Also for the shape parameter, we reveal that the second-order matching prior is an HPD matching prior and a CDF matching prior and also matches the alternative coverage probabilities up to the second order. For both parameters, we reveal that the one-at-a-time reference prior is the second-order matching prior, but Jeffreys’ prior is not the first-order and the second-order matching prior. A simulation study is performed to compare the target coverage probabilities and a real example is given.  相似文献   

2.
For normal populations with unequal variances, we develop matching priors and reference priors for a linear combination of the means. Here, we find three second-order matching priors: a highest posterior density (HPD) matching prior, a cumulative distribution function (CDF) matching prior, and a likelihood ratio (LR) matching prior. Furthermore, we show that the reference priors are all first-order matching priors, but that they do not satisfy the second-order matching criterion that establishes the symmetry and the unimodality of the posterior under the developed priors. The results of a simulation indicate that the second-order matching prior outperforms the reference priors in terms of matching the target coverage probabilities, in a frequentist sense. Finally, we compare the Bayesian credible intervals based on the developed priors with the confidence intervals derived from real data.  相似文献   

3.
In this paper, we develop noninformative priors for linear combinations of the means under the normal populations. It turns out that among the reference priors the one-at-a-time reference prior satisfies a second order probability matching criterion. Moreover, the second order probability matching priors match alternative coverage probabilities up to the second order and are also HPD matching priors. Our simulation study indicates that the one-at-a-time reference prior performs better than the other reference priors in terms of matching the target coverage probabilities in a frequentist sense.  相似文献   

4.
In this paper, we consider noninformative priors for the ratio of variances in two normal populations. We develop first and second order matching priors. We find that the second order matching prior matches alternative coverage probabilities up to the second order and is also a HPD matching prior. It turns out that among the reference priors, only one-at-a-time reference prior satisfies a second order matching criterion. Our simulation study indicates that the one-at-a-time reference prior performs better than other reference priors in terms of matching the target coverage probabilities in a frequentist sense. This work is supported by Korea Research Foundation Grant (KRF-2004-002-C00041).  相似文献   

5.
In this paper, we consider some noninformative priors for the common mean in a bivariate normal population. We develop the first-order and second-order matching priors and reference priors. We find that the second-order matching prior is also an HPD matching prior, and matches the alternative coverage probabilities up to the second order. It turns out that derived reference priors do not satisfy a second-order matching criterion. Our simulation study indicates that the second-order matching prior performs better than the reference priors in terms of matching the target coverage probabilities in a frequentist sense. We also illustrate our results using real data.  相似文献   

6.
In this paper, we develop a matching prior for the product of means in several normal distributions with unrestricted means and unknown variances. For this problem, properly assigning priors for the product of normal means has been issued because of the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. We developed the first order probability matching priors for this problem; however, the developed matching priors are unproper. Thus, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that the derived matching prior performs better than the uniform prior and Jeffreys’ prior in meeting the target coverage probabilities, and meets well the target coverage probabilities even for the small sample sizes. In addition, to evaluate the validity of the proposed matching prior, Bayesian credible interval for the product of normal means using the matching prior is compared to Bayesian credible intervals using the uniform prior and Jeffrey’s prior, and the confidence interval using the method of Yfantis and Flatman.  相似文献   

7.
The paper develops some objective priors for the common mean in the one-way random effects model with heterogeneous error variances. We derive the first and second order matching priors and reference priors. It turns out that the second order matching prior matches the alternative coverage probabilities up to the second order, and is also an HPD matching prior. However, derived reference priors just satisfy a first order matching criterion. Our simulation studies indicate that the second order matching prior performs better than the reference prior and the Jeffreys prior in terms of matching the target coverage probabilities in a frequentist sense. We also illustrate our results using real data.  相似文献   

8.
The Weibull distribution is widely used due to its versatility and relative simplicity. In our paper, the non informative priors for the ratio of the scale parameters of two Weibull models are provided. The asymptotic matching of coverage probabilities of Bayesian credible intervals is considered, with the corresponding frequentist coverage probabilities. We developed the various priors for the ratio of two scale parameters using the following matching criteria: quantile matching, matching of distribution function, highest posterior density matching, and inversion of test statistics. One particular prior, which meets all the matching criteria, is found. Next, we derive the reference priors for groups of ordering. We see that all the reference priors satisfy a first-order matching criterion and that the one-at-a-time reference prior is a second-order matching prior. A simulation study is performed and an example given.  相似文献   

9.
For the unbalanced one-way random effects model with heterogeneous error variances, we propose the non-informative priors for the between-group variance and develop the first- and second-order matching priors. It turns out that the second-order matching priors do not exist and the reference prior and Jeffreys prior do not satisfy a first-order matching criterion. We also show that the first-order matching prior meets the frequentist target coverage probabilities much better than the Jeffreys prior and reference prior through simulation study, and the Bayesian credible intervals based on the matching prior and reference prior give shorter intervals than the existing confidence intervals by examples.  相似文献   

10.
Bayesian inference of a generalized Weibull stress‐strength model (SSM) with more than one strength component is considered. For this problem, properly assigning priors for the reliabilities is challenging due to the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. Instead, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that this proposed prior performs well in terms of frequentist coverage and estimation even when the sample sizes are minimal. The prior is applied to two real datasets. The Canadian Journal of Statistics 41: 83–97; 2013 © 2012 Statistical Society of Canada  相似文献   

11.
Noninformative priors are used for estimating the reliability of a stress-strength system. Several reference priors (cf. Berger and Bernardo 1989, 1992) are derived. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible intervals with the corresponding frequentist coverage probabilities. It turns out that none of the reference priors is a matching prior. Sufficient conditions for propriety of posteriors under reference priors and matching priors are provided. A simple matching prior is compared with three reference priors when sample sizes are small. The study shows that the matching prior performs better than Jeffreys's prior and reference priors in meeting the target coverage probabilities.  相似文献   

12.
The Bayes factor is a key tool in hypothesis testing. Nevertheless, the important issue of which priors should be used to develop objective Bayes factors remains open. The authors consider this problem in the context of the one-way random effects model. They use concepts such as orthogonality, predictive matching and invariance to justify a specific form of the priors for common parameters and derive the intrinsic and divergence based prior for the new parameter. The authors show that both intrinsic priors or divergence-based priors produce consistent Bayes factors. They illustrate the methods and compare them with other proposals.  相似文献   

13.
In this paper, we present an innovative method for constructing proper priors for the skewness (shape) parameter in the skew‐symmetric family of distributions. The proposed method is based on assigning a prior distribution on the perturbation effect of the shape parameter, which is quantified in terms of the total variation distance. We discuss strategies to translate prior beliefs about the asymmetry of the data into an informative prior distribution of this class. We show via a Monte Carlo simulation study that our non‐informative priors induce posterior distributions with good frequentist properties, similar to those of the Jeffreys prior. Our informative priors yield better results than their competitors from the literature. We also propose a scale‐invariant and location‐invariant prior structure for models with unknown location and scale parameters and provide sufficient conditions for the propriety of the corresponding posterior distribution. Illustrative examples are presented using simulated and real data.  相似文献   

14.
This paper considers noninformative priors for three-stage nested designs. It turns out that the noninformative prior given by Li and Stern (1997) is the one-at-a-time reference prior satisfying a second-order matching criterion when either the variance ratio or linear combinations of the means is of interest. Moreover, it is a joint probability matching prior when both the variance ratio and linear combinations of the means are of interest. These priors are compared with Jeffreys' prior in light of how accurately the coverage probabilities of Bayesian credible intervals match the corresponding frequentist coverage probabilities.  相似文献   

15.
In this article, the Bayes estimates of two-parameter gamma distribution are considered. It is well known that the Bayes estimators of the two-parameter gamma distribution do not have compact form. In this paper, it is assumed that the scale parameter has a gamma prior and the shape parameter has any log-concave prior, and they are independently distributed. Under the above priors, we use Gibbs sampling technique to generate samples from the posterior density function. Based on the generated samples, we can compute the Bayes estimates of the unknown parameters and can also construct HPD credible intervals. We also compute the approximate Bayes estimates using Lindley's approximation under the assumption of gamma priors of the shape parameter. Monte Carlo simulations are performed to compare the performances of the Bayes estimators with the classical estimators. One data analysis is performed for illustrative purposes. We further discuss the Bayesian prediction of future observation based on the observed sample and it is seen that the Gibbs sampling technique can be used quite effectively for estimating the posterior predictive density and also for constructing predictive intervals of the order statistics from the future sample.  相似文献   

16.
The paper develops some objective priors for correlation coefficient of the bivariate normal distribution. The criterion used is the asymptotic matching of coverage probabilities of Bayesian credible intervals with the corresponding frequentist coverage probabilities. The paper uses various matching criteria, namely, quantile matching, highest posterior density matching, and matching via inversion of test statistics. Each matching criterion leads to a different prior for the parameter of interest. We evaluate their performance by comparing credible intervals through simulation studies. In addition, inference through several likelihood-based methods have been discussed.  相似文献   

17.
Vector autoregressive (VAR) models are frequently used for forecasting and impulse response analysis. For both applications, shrinkage priors can help improving inference. In this article, we apply the Normal-Gamma shrinkage prior to the VAR with stochastic volatility case and derive its relevant conditional posterior distributions. This framework imposes a set of normally distributed priors on the autoregressive coefficients and the covariance parameters of the VAR along with Gamma priors on a set of local and global prior scaling parameters. In a second step, we modify this prior setup by introducing another layer of shrinkage with scaling parameters that push certain regions of the parameter space to zero. Two simulation exercises show that the proposed framework yields more precise estimates of model parameters and impulse response functions. In addition, a forecasting exercise applied to U.S. data shows that this prior performs well relative to other commonly used specifications in terms of point and density predictions. Finally, performing structural inference suggests that responses to monetary policy shocks appear to be reasonable.  相似文献   

18.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

19.
We study a Bayesian approach to recovering the initial condition for the heat equation from noisy observations of the solution at a later time. We consider a class of prior distributions indexed by a parameter quantifying “smoothness” and show that the corresponding posterior distributions contract around the true parameter at a rate that depends on the smoothness of the true initial condition and the smoothness and scale of the prior. Correct combinations of these characteristics lead to the optimal minimax rate. One type of priors leads to a rate-adaptive Bayesian procedure. The frequentist coverage of credible sets is shown to depend on the combination of the prior and true parameter as well, with smoother priors leading to zero coverage and rougher priors to (extremely) conservative results. In the latter case, credible sets are much larger than frequentist confidence sets, in that the ratio of diameters diverges to infinity. The results are numerically illustrated by a simulated data example.  相似文献   

20.
In this paper, we consider the Bayesian analysis of competing risks data, when the data are partially complete in both time and type of failures. It is assumed that the latent cause of failures have independent Weibull distributions with the common shape parameter, but different scale parameters. When the shape parameter is known, it is assumed that the scale parameters have Beta–Gamma priors. In this case, the Bayes estimates and the associated credible intervals can be obtained in explicit forms. When the shape parameter is also unknown, it is assumed that it has a very flexible log-concave prior density functions. When the common shape parameter is unknown, the Bayes estimates of the unknown parameters and the associated credible intervals cannot be obtained in explicit forms. We propose to use Markov Chain Monte Carlo sampling technique to compute Bayes estimates and also to compute associated credible intervals. We further consider the case when the covariates are also present. The analysis of two competing risks data sets, one with covariates and the other without covariates, have been performed for illustrative purposes. It is observed that the proposed model is very flexible, and the method is very easy to implement in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号