首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

In this paper, we present a fractional decomposition of the probability generating function of the innovation process of the first-order non-negative integer-valued autoregressive [INAR(1)] process to obtain the corresponding probability mass function. We also provide a comprehensive review of integer-valued time series models, based on the concept of thinning operators with geometric-type marginals. In particular, we develop two fractional approaches to obtain the distribution of innovation processes of the INAR(1) model and show that the distribution of the innovations sequence has geometric-type distribution. These approaches are discussed in detail and illustrated through a few examples.  相似文献   

2.
The main contribution of this paper is a proof of the asymptotic validity of the application of the bootstrap to AR(∞) processes with unmodelled conditional heteroskedasticity. We first derive the asymptotic properties of the least-squares estimator of the autoregressive sieve parameters when the data are generated by a stationary linear process with martingale difference errors that are possibly subject to conditional heteroskedasticity of unknown form. These results are then used in establishing that a suitably constructed bootstrap estimator will have the same limit distribution as the least-squares estimator. Our results provide theoretical justification for the use of either the conventional asymptotic approximation based on robust standard errors or the bootstrap approximation of the distribution of autoregressive parameters. A simulation study suggests that the bootstrap approach tends to be more accurate in small samples.  相似文献   

3.
《Econometric Reviews》2007,26(6):609-641
The main contribution of this paper is a proof of the asymptotic validity of the application of the bootstrap to AR(∞) processes with unmodelled conditional heteroskedasticity. We first derive the asymptotic properties of the least-squares estimator of the autoregressive sieve parameters when the data are generated by a stationary linear process with martingale difference errors that are possibly subject to conditional heteroskedasticity of unknown form. These results are then used in establishing that a suitably constructed bootstrap estimator will have the same limit distribution as the least-squares estimator. Our results provide theoretical justification for the use of either the conventional asymptotic approximation based on robust standard errors or the bootstrap approximation of the distribution of autoregressive parameters. A simulation study suggests that the bootstrap approach tends to be more accurate in small samples.  相似文献   

4.
In a simple autoregressive model with serially correlated errors, we evaluate size distortions resulting from the residual bootstrap when the Wold innovation is serially dependent and hence is expected to contaminate the inference. The small distortions caused by the presence of strong conditional heteroskedasticity or other nonlinearities can be partly removed further by using the wild bootstrap.  相似文献   

5.
ABSTRACT

In this article, the unit root test for the AR(1) model is discussed, under the condition that the innovations of the model are in the domain of attraction of the normal law with possibly infinite variances. By using residual bootstrap with sample size m < n (n being the size of the original sample), we bootstrap the least-squares estimator of the autoregressive parameter. Under some mild assumptions, we prove that the null distribution of the unit root test statistic based on the least-square estimator of the autoregressive parameter can be approximated by using residual bootstrap.  相似文献   

6.
Traditional multivariate quality control charts are based on independent observations. In this paper, we explain how to extend univariate residual charts to multivariate cases and how to combine the traditional statistical process control (SPC) approaches to monitor changes in process variability in a dynamic environment. We propose using Alt's (1984) W chart on vector autoregressive (VAR) residuals to monitor the variability for multivariate processes in the presence of autocorrelation. We study examples jointly using the Hotelling T2 chart on VAR residuals, the W chart, and the Portmanteau test to diagnose the types of shift in process parameters.  相似文献   

7.
Abstract.  The aim of this paper is to prove the validity of smooth residual bootstrap versions of procedures that are based on the empirical process of residuals estimated from a non-parametric regression model. From this result, consistency of various model tests in non-parametric regression is deduced, such as goodness-of-fit tests for the regression and variance function, tests for equality of regression functions and tests concerning the error distribution.  相似文献   

8.
In epidemiological surveillance it is important that any unusual increase of reported cases be detected as rapidly as possible. Reliable forecasting based on a suitable time series model for an epidemiological indicator is necessary for estimating the expected non-epidemic indicator and to elaborate an alert threshold. Time series analyses of acute diseases often use Gaussian autoregressive integrated moving average models. However, these approaches can be adversely affected by departures from the true underlying distribution. The objective of this paper is to introduce a bootstrap procedure for obtaining prediction intervals in linear models in order to avoid the normality assumption. We present a Monte Carlo study comparing the finite sample properties of bootstrap prediction intervals with those of alternative methods. Finally, we illustrate the performance of the proposed method with a meningococcal disease incidence series.  相似文献   

9.
Integer-valued autoregressive (INAR) processes form a very useful class of processes suitable to model time series of counts. Several practically relevant estimators based on INAR data are known to be systematically biased away from their population values, e.g. sample autocovariances, sample autocorrelations, or the dispersion index. We propose to do bias correction for such estimators by using a recently proposed INAR-type bootstrap scheme that is tailor-made for INAR processes, and which has been proven to be asymptotically consistent under general conditions. This INAR bootstrap allows an implementation with and without parametrically specifying the innovations' distribution. To judge the potential of corresponding bias correction, we compare these bootstraps in simulations to several competitors that include the AR bootstrap and block bootstrap. Finally, we conclude with an illustrative data application.  相似文献   

10.
We show that the linear process bootstrap (LPB) and the autoregressive sieve bootstrap (AR sieve) are, in general, not valid for statistics whose large-sample distribution depends on moments of order higher than two, irrespective of whether the data come from a linear time series or not. Inspired by the block-of-blocks bootstrap, we circumvent this non-validity by applying the LPB and AR sieve to suitably blocked data and not to the original data itself. In a simulation study, we compare the LPB, AR sieve, and moving block bootstrap applied directly and to blocked data.  相似文献   

11.
The sieve bootstrap (SB) prediction intervals for invertible autoregressive moving average (ARMA) processes are constructed using resamples of residuals obtained by fitting a finite degree autoregressive approximation to the time series. The advantage of this approach is that it does not require the knowledge of the orders, p and q, associated with the ARMA(p, q) model. Up until recently, the application of this method has been limited to ARMA processes whose autoregressive polynomials do not have fractional unit roots. The authors, in a 2012 publication, introduced a version of the SB suitable for fractionally integrated autoregressive moving average (FARIMA (p,d,q)) processes with 0<d<0.5 and established its asymptotic validity. Herein, we study the finite sample properties this new method and compare its performance against an older method introduced by Bisaglia and Grigoletto in 2001. The sieve bootstrap (SB) method is a numerically simpler alternative to the older method which requires the estimation of p, d, and q at every bootstrap step. Monte-Carlo simulation studies, carried out under the assumption of normal, mixture of normals, and exponential distributions for the innovations, show near nominal coverages for short-term and long-term SB prediction intervals under most situations. In addition, the sieve bootstrap method yields better coverage and narrower intervals compared to the Bisaglia–Grigoletto method in some situations, especially when the error distribution is a mixture of normals.  相似文献   

12.
Abstract.  Many time series in applied sciences obey a time-varying spectral structure. In this article, we focus on locally stationary processes and develop tests of the hypothesis that the time-varying spectral density has a semiparametric structure, including the interesting case of a time-varying autoregressive moving-average (tvARMA) model. The test introduced is based on a L 2 -distance measure of a kernel smoothed version of the local periodogram rescaled by the time-varying spectral density of the estimated semiparametric model. The asymptotic distribution of the test statistic under the null hypothesis is derived. As an interesting special case, we focus on the problem of testing for the presence of a tvAR model. A semiparametric bootstrap procedure to approximate more accurately the distribution of the test statistic under the null hypothesis is proposed. Some simulations illustrate the behaviour of our testing methodology in finite sample situations.  相似文献   

13.
Given a linear time series, e.g. an autoregression of infinite order, we may construct a finite order approximation and use that as the basis for confidence regions. The sieve or autoregressive bootstrap, as this method is often called, is generally seen as a competitor with the better-understood block bootstrap approach. However, in the present paper we argue that, for linear time series, the sieve bootstrap has significantly better performance than blocking methods and offers a wider range of opportunities. In particular, since it does not corrupt second-order properties then it may be used in a double-bootstrap form, with the second bootstrap application being employed to calibrate a basic percentile method confidence interval. This approach confers second-order accuracy without the need to estimate variance. That offers substantial benefits, since variances of statistics based on time series can be difficult to estimate reliably, and—partly because of the relatively small amount of information contained in a dependent process—are notorious for causing problems when used to Studentize. Other advantages of the sieve bootstrap include considerably greater robustness against variations in the choice of the tuning parameter, here equal to the autoregressive order, and the fact that, in contradistinction to the case of the block bootstrap, the percentile t version of the sieve bootstrap may be based on the 'raw' estimator of standard error. In the process of establishing these properties we show that the sieve bootstrap is second order correct.  相似文献   

14.
 当误差项不服从独立同分布时,利用Moran’s I统计量的渐近检验,无法有效判断空间经济计量滞后模型2SLS估计残差间存在空间关系与否。本文采用两种基于残差的Bootstrap方法,诊断空间经济计量滞后模型残差中的空间相关关系。大量Monte Carlo模拟结果显示,从功效角度看,无论误差项服从独立同分布与否,与渐近检验相比,Bootstrap Moran检验都具有更好的有限样本性质,能够更有效地进行空间相关性检验。尤其是,在样本量较小和空间衔接密度较高情况下,Bootstrap Moran检验的功效显著大于渐近检验。  相似文献   

15.
This study considers a goodness-of-fit test for location-scale time series models with heteroscedasticity, including a broad class of generalized autoregressive conditional heteroscedastic-type models. In financial time series analysis, the correct identification of model innovations is crucial for further inferences in diverse applications such as risk management analysis. To implement a goodness-of-fit test, we employ the residual-based entropy test generated from the residual empirical process. Since this test often shows size distortions and is affected by parameter estimation, its bootstrap version is considered. It is shown that the bootstrap entropy test is weakly consistent, and thereby its usage is justified. A simulation study and data analysis are conducted by way of an illustration.  相似文献   

16.
We consider a first-order autoregressive process when the autoregressive parameter β may vary over the entire real line. The standard bootstrap approximation to the sampling distribution of the least squares estimator of β is shown to converge weakly to a random (i.e., nondegenerate) limit for the usual choice of the bootstrap sample size when β equals 1 or −1. The bootstrap approximation, however, is asymptotically valid in probability, or even almost surely, for suitably selected resample sizes, whatever β may be.  相似文献   

17.
In this paper, a bootstrap test based on the least absolute deviation (LAD) estimation for the unit root test in first-order autoregressive models with dependent residuals is considered. The convergence in probability of the bootstrap distribution function is established. Under the frame of dependence assumptions, the asymptotic behavior of the bootstrap LAD estimator is independent of the covariance matrix of the residuals, which automatically approximates the target distribution.  相似文献   

18.

We consider a sieve bootstrap procedure to quantify the estimation uncertainty of long-memory parameters in stationary functional time series. We use a semiparametric local Whittle estimator to estimate the long-memory parameter. In the local Whittle estimator, discrete Fourier transform and periodogram are constructed from the first set of principal component scores via a functional principal component analysis. The sieve bootstrap procedure uses a general vector autoregressive representation of the estimated principal component scores. It generates bootstrap replicates that adequately mimic the dependence structure of the underlying stationary process. We first compute the estimated first set of principal component scores for each bootstrap replicate and then apply the semiparametric local Whittle estimator to estimate the memory parameter. By taking quantiles of the estimated memory parameters from these bootstrap replicates, we can nonparametrically construct confidence intervals of the long-memory parameter. As measured by coverage probability differences between the empirical and nominal coverage probabilities at three levels of significance, we demonstrate the advantage of using the sieve bootstrap compared to the asymptotic confidence intervals based on normality.

  相似文献   

19.
We propose autoregressive moving average (ARMA) and generalized autoregressive conditional heteroscedastic (GARCH) models driven by asymmetric Laplace (AL) noise. The AL distribution plays, in the geometric-stable class, the analogous role played by the normal in the alpha-stable class, and has shown promise in the modelling of certain types of financial and engineering data. In the case of an ARMA model we derive the marginal distribution of the process, as well as its bivariate distribution when separated by a finite number of lags. The calculation of exact confidence bands for minimum mean-squared error linear predictors is shown to be straightforward. Conditional maximum likelihood-based inference is advocated, and corresponding asymptotic results are discussed. The models are particularly suited for processes that are skewed, peaked, and leptokurtic, but which appear to have some higher order moments. A case study of a fund of real estate returns reveals that AL noise models tend to deliver a superior fit with substantially less parameters than normal noise counterparts, and provide both a competitive fit and a greater degree of numerical stability with respect to other skewed distributions.  相似文献   

20.
Continuous-time autoregressive moving average (CARMA) processes with a nonnegative kernel and driven by a nondecreasing Lévy process constitute a useful and very general class of stationary, nonnegative continuous-time processes that have been used, in particular, for the modeling of stochastic volatility. Brockwell, Davis, and Yang (2007) derived efficient estimates of the parameters of a nonnegative Lévy-driven CAR(1) process and showed how the realization of the underlying Lévy process can be estimated from closely-spaced observations of the process itself. In this article we show how the ideas of that article can be generalized to higher order CARMA processes with nonnegative kernel, the key idea being the decomposition of the CARMA process into a sum of dependent Ornstein–Uhlenbeck processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号