共查询到20条相似文献,搜索用时 15 毫秒
1.
AbstractIn this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods. 相似文献
2.
《Journal of the Korean Statistical Society》2014,43(3):439-452
Nonparametric additive models are powerful techniques for multivariate data analysis. Although many procedures have been developed for estimating additive components both in mean regression and quantile regression, the problem of selecting relevant components has not been addressed much especially in quantile regression. We present a doubly-penalized estimation procedure for component selection in additive quantile regression models that combines basis function approximation with a ridge-type penalty and a variant of the smoothly clipped absolute deviation penalty. We show that the proposed estimator identifies relevant and irrelevant components consistently and achieves the nonparametric optimal rate of convergence for the relevant components. We also provide an accurate and efficient computation algorithm to implement the estimator and demonstrate its performance through simulation studies. Finally, we illustrate our method via a real data example to identify important body measurements to predict percentage of body fat of an individual. 相似文献
3.
The linear regression models with the autoregressive moving average (ARMA) errors (REGARMA models) are often considered, in order to reflect a serial correlation among observations. In this article, we focus on an adaptive least absolute shrinkage and selection operator (LASSO) (ALASSO) method for the variable selection of the REGARMA models and extend it to the linear regression models with the ARMA-generalized autoregressive conditional heteroskedasticity (ARMA-GARCH) errors (REGARMA-GARCH models). This attempt is an extension of the existing ALASSO method for the linear regression models with the AR errors (REGAR models) proposed by Wang et al. in 2007. New ALASSO algorithms are proposed to determine important predictors for the REGARMA and REGARMA-GARCH models. Finally, we provide the simulation results and real data analysis to illustrate our findings. 相似文献
4.
Kaifeng Zhao 《Statistics》2016,50(6):1276-1289
This paper considers variable selection in additive quantile regression based on group smoothly clipped absolute deviation (gSCAD) penalty. Although shrinkage variable selection in additive models with least-squares loss has been well studied, quantile regression is sufficiently different from mean regression to deserve a separate treatment. It is shown that the gSCAD estimator can correctly identify the significant components and at the same time maintain the usual convergence rates in estimation. Simulation studies are used to illustrate our method. 相似文献
5.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods. 相似文献
6.
7.
Model selection in quantile regression models 总被引:1,自引:0,他引:1
Rahim Alhamzawi 《Journal of applied statistics》2015,42(2):445-458
Lasso methods are regularisation and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables [32]. A scale mixture of normal priors can also provide an adaptive regularisation method and represents an alternative model to the Bayesian Lasso-type model. In this paper, we assign a normal prior with mean zero and unknown variance for each quantile coefficient of independent variable. Then, a simple Markov Chain Monte Carlo-based computation technique is developed for quantile regression (QReg) models, including continuous, binary and left-censored outcomes. Based on the proposed prior, we propose a criterion for model selection in QReg models. The proposed criterion can be applied to classical least-squares, classical QReg, classical Tobit QReg and many others. For example, the proposed criterion can be applied to rq(), lm() and crq() which is available in an R package called Brq. Through simulation studies and analysis of a prostate cancer data set, we assess the performance of the proposed methods. The simulation studies and the prostate cancer data set analysis confirm that our methods perform well, compared with other approaches. 相似文献
8.
Due to computational challenges and non-availability of conjugate prior distributions, Bayesian variable selection in quantile regression models is often a difficult task. In this paper, we address these two issues for quantile regression models. In particular, we develop an informative stochastic search variable selection (ISSVS) for quantile regression models that introduces an informative prior distribution. We adopt prior structures which incorporate historical data into the current data by quantifying them with a suitable prior distribution on the model parameters. This allows ISSVS to search more efficiently in the model space and choose the more likely models. In addition, a Gibbs sampler is derived to facilitate the computation of the posterior probabilities. A major advantage of ISSVS is that it avoids instability in the posterior estimates for the Gibbs sampler as well as convergence problems that may arise from choosing vague priors. Finally, the proposed methods are illustrated with both simulation and real data. 相似文献
9.
Xianli Gao 《统计学通讯:理论与方法》2020,49(19):4712-4736
AbstractIn this paper, we propose a variable selection method for quantile regression model in ultra-high dimensional longitudinal data called as the weighted adaptive robust lasso (WAR-Lasso) which is double-robustness. We derive the consistency and the model selection oracle property of WAR-Lasso. Simulation studies show the double-robustness of WAR-Lasso in both cases of heavy-tailed distribution of the errors and the heavy contaminations of the covariates. WAR-Lasso outperform other methods such as SCAD and etc. A real data analysis is carried out. It shows that WAR-Lasso tends to select fewer variables and the estimated coefficients are in line with economic significance. 相似文献
10.
From the prediction viewpoint, mode regression is more attractive since it pay attention to the most probable value of response variable given regressors. On the other hand, high-dimensional data are very prevalent as the advance of the technology of collecting and storing data. Variable selection is an important strategy to deal with high-dimensional regression problem. This paper aims to propose a variable selection procedure for high-dimensional mode regression via combining nonparametric kernel estimation method with sparsity penalty tactics. We also establish the asymptotic properties under certain technical conditions. The effectiveness and flexibility of the proposed methods are further illustrated by numerical studies and the real data application. 相似文献
11.
《Journal of the Korean Statistical Society》2014,43(4):531-543
In this paper, a penalized weighted composite quantile regression estimation procedure is proposed to estimate unknown regression parameters and autoregression coefficients in the linear regression model with heavy-tailed autoregressive errors. Under some conditions, we show that the proposed estimator possesses the oracle properties. In addition, we introduce an iterative algorithm to achieve the proposed optimization problem, and use a data-driven method to choose the tuning parameters. Simulation studies demonstrate that the proposed new estimation method is robust and works much better than the least squares based method when there are outliers in the dataset or the autoregressive error distribution follows heavy-tailed distributions. Moreover, the proposed estimator works comparably to the least squares based estimator when there are no outliers and the error is normal. Finally, we apply the proposed methodology to analyze the electricity demand dataset. 相似文献
12.
Wei Xiong 《Journal of applied statistics》2014,41(10):2240-2256
In this article, we propose a novel robust data-analytic procedure, dynamic quantile regression (DQR), for model selection. It is robust in the sense that it can simultaneously estimate the coefficients and the distribution of errors over a large collection of error distributions even those that are heavy-tailed and may not even possess variances or means; and DQR is easy to implement in the sense that it does not need to decide in advance which quantile(s) should be gathered. Asymptotic properties of related estimators are derived. Simulations and illustrative real examples are also given. 相似文献
13.
Ailing Yan 《统计学通讯:理论与方法》2013,42(20):5106-5120
AbstractThere has been much attention on the high-dimensional linear regression models, which means the number of observations is much less than that of covariates. Considering the fact that the high dimensionality often induces the collinearity problem, in this article, we study the penalized quantile regression with the elastic net (EnetQR) that combines the strengths of the quadratic regularization and the lasso shrinkage. We investigate the weak oracle property of the EnetQR under mild conditions in the high dimensional setting. Moreover, we propose a two-step procedure, called adaptive elastic net quantile regression (AEnetQR), in which the weight vector in the second step is constructed from the EnetQR estimate in the first step. This two-step procedure is justified theoretically to possess the weak oracle property. The finite sample properties are performed through the Monte Carlo simulation and a real-data analysis. 相似文献
14.
Quantile regression (QR) provides estimates of a range of conditional quantiles. This stands in contrast to traditional regression techniques, which focus on a single conditional mean function. Lee et al. [Regularization of case-specific parameters for robustness and efficiency. Statist Sci. 2012;27(3):350–372] proposed efficient QR by rounding the sharp corner of the loss. The main modification generally involves an asymmetric ?2 adjustment of the loss function around zero. We extend the idea of ?2 adjusted QR to linear heterogeneous models. The ?2 adjustment is constructed to diminish as sample size grows. Conditions to retain consistency properties are also provided. 相似文献
15.
The check loss function is used to define quantile regression. In cross-validation, it is also employed as a validation function when the true distribution is unknown. However, our empirical study indicates that validation with the check loss often leads to overfitting the data. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. This has the effect of guarding against overfitting to some extent. The adjustment is devised to shrink to zero as sample size grows. Through various simulation settings of linear and nonlinear regressions, the improvement due to modification of the check loss by quadratic adjustment is examined empirically. 相似文献
16.
Variable selection is an important task in regression analysis. Performance of the statistical model highly depends on the determination of the subset of predictors. There are several methods to select most relevant variables to construct a good model. However in practice, the dependent variable may have positive continuous values and not normally distributed. In such situations, gamma distribution is more suitable than normal for building a regression model. This paper introduces an heuristic approach to perform variable selection using artificial bee colony optimization for gamma regression models. We evaluated the proposed method against with classical selection methods such as backward and stepwise. Both simulation studies and real data set examples proved the accuracy of our selection procedure. 相似文献
17.
18.
《Journal of Statistical Computation and Simulation》2012,82(18):3744-3754
One advantage of quantile regression, relative to the ordinary least-square (OLS) regression, is that the quantile regression estimates are more robust against outliers and non-normal errors in the response measurements. However, the relative efficiency of the quantile regression estimator with respect to the OLS estimator can be arbitrarily small. To overcome this problem, composite quantile regression methods have been proposed in the literature which are resistant to heavy-tailed errors or outliers in the response and at the same time are more efficient than the traditional single quantile-based quantile regression method. This paper studies the composite quantile regression from a Bayesian perspective. The advantage of the Bayesian hierarchical framework is that the weight of each component in the composite model can be treated as open parameter and automatically estimated through Markov chain Monte Carlo sampling procedure. Moreover, the lasso regularization can be naturally incorporated into the model to perform variable selection. The performance of the proposed method over the single quantile-based method was demonstrated via extensive simulations and real data analysis. 相似文献
19.
Conglian Yu 《统计学通讯:理论与方法》2020,49(18):4347-4366
AbstractIn this article, we propose a new penalized-likelihood method to conduct model selection for finite mixture of regression models. The penalties are imposed on mixing proportions and regression coefficients, and hence order selection of the mixture and the variable selection in each component can be simultaneously conducted. The consistency of order selection and the consistency of variable selection are investigated. A modified EM algorithm is proposed to maximize the penalized log-likelihood function. Numerical simulations are conducted to demonstrate the finite sample performance of the estimation procedure. The proposed methodology is further illustrated via real data analysis. 相似文献
20.
ABSTRACTThe varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example. 相似文献