首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a k-connected graph G=(V,E) and V V, k-Vertex-Connected Subgraph Augmentation Problem (k-VCSAP) is to find SVV with minimum cardinality such that the subgraph induced by V S is k-connected. In this paper, we study the hardness of k-VCSAP in undirect graphs. We first prove k-VCSAP is APX-hard. Then, we improve the lower bound in two ways by relying on different assumptions. That is, we prove no algorithm for k-VCSAP has a PR better than O(log (log n)) unless P=NP and O(log n) unless NPDTIME(n O(log log n)), where n is the size of an input graph.  相似文献   

2.
An improved approximation algorithm is presented in this paper for the multicast k-tree routing problem. The algorithm has a worst case performance ratio of (2.4 + ρ), where ρ is the best approximation ratio for the metric Steiner tree problem (and is about 1.55 so far). The previous best approximation algorithm for the multicast k-tree routing problem has a performance ratio of 4. Two techniques, weight averaging and tree partitioning, are developed to facilitate the algorithm design and analysis.Research supported by AICML, CFI, NSERC, PENCE, a Startup Grant from the University of Alberta, and NNSF Grant 60373012.  相似文献   

3.
The problem Min-Power k-Connectivity seeks a power assignment to the nodes in a given wireless ad hoc network such that the produced network topology is k-connected and the total power is the lowest. In this paper, we present several approximation algorithms for this problem. Specifically, we propose a 3k-approximation algorithm for any k, a (k + 12H (k)) -approximation algorithm for k(2k–1) n where n is the network size, a (k+2(k + 1)/2) -approximation algorithm for 2 k7, a 6-approximation algorithm for k = 3, and a 9-approximation algorithm for k = 4.This work is supported in part by Hong Kong Research Grant Council under grant No. CityU 1149/04E.This work is partially supported by NSF CCR-0311174.  相似文献   

4.
Some sensor network applications require k-coverage to ensure the quality of surveillance. Meanwhile, energy is another primary concern for sensor networks. In this paper, we investigate the Sensor Scheduling for k-Coverage (SSC) problem which requires to efficiently schedule the sensors, such that the monitored area can be k-covered throughout the whole network lifetime with the purpose of maximizing network lifetime. The SSC problem is NP-hard and we propose two heuristic algorithms under different scenarios. In addition, we develop a guideline for users to better design a sensor deployment plan to save energy by employing a density control scheme. Simulation results are presented to evaluate our proposed algorithms.  相似文献   

5.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k -distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The minimum cardinality of a k-distance paired dominating set for graph G is the k -distance paired domination number, denoted by γ p k (G). In this paper, we determine the exact k-distance paired domination number of generalized Petersen graphs P(n,1) and P(n,2) for all k≥1.  相似文献   

6.
The Densest k-Subgraph (DkS) problem asks for a k-vertex subgraph of a given graph with the maximum number of edges. The problem is strongly NP-hard, as a generalization of the well known Clique problem and we also know that it does not admit a Polynomial Time Approximation Scheme (PTAS). In this paper we focus on special cases of the problem, with respect to the class of the input graph. Especially, towards the elucidation of the open questions concerning the complexity of the problem for interval graphs as well as its approximability for chordal graphs, we consider graphs having special clique graphs. We present a PTAS for stars of cliques and a dynamic programming algorithm for trees of cliques. M.L. is co-financed within Op. Education by the ESF (European Social Fund) and National Resources. V.Z. is partially supported by the Special Research Grants Account of the University of Athens under Grant 70/4/5821.  相似文献   

7.
Given a graph G=(V,E) with node weight w:VR +, the minimum weighted connected vertex cover problem (MWCVC) is to seek a subset of vertices of the graph with minimum total weight, such that for any edge of the graph, at least one endpoint of the edge is contained in the subset, and the subgraph induced by this subset is connected. In this paper, we study the problem on unit disk graph. A polynomial-time approximation scheme (PTAS) for MWCVC is presented under the condition that the graph is c-local.  相似文献   

8.
This paper deals with the fitness landscape analysis of the k-coloring problem. We study several standard instances extracted from the second DIMACS benchmark. Statistical indicators are used to investigate both global and local structure of fitness landscapes. An approximative distance on the k-coloring space is proposed to perform these statistical measures. Local search operator trajectories on various landscapes are then studied using the time series analysis. Results are used to better understand the behavior of metaheuristics based on local search when dealing with the graph coloring problem.  相似文献   

9.
We study the extremal parameter N(n,m,H) which is the largest number of copies of a hypergraph H that can be formed of at most n vertices and m edges. Generalizing previous work of Alon (Isr. J. Math. 38:116–130, 1981), Friedgut and Kahn (Isr. J. Math. 105:251–256, 1998) and Janson, Oleszkiewicz and the third author (Isr. J. Math. 142:61–92, 2004), we obtain an asymptotic formula for N(n,m,H) which is strongly related to the solution α q (H) of a linear programming problem, called here the fractional q-independence number of H. We observe that α q (H) is a piecewise linear function of q and determine it explicitly for some ranges of q and some classes of H. As an application, we derive exponential bounds on the upper tail of the distribution of the number of copies of H in a random hypergraph.  相似文献   

10.
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (\({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\)). We prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {NP}\)-hard on planar bipartite graphs of maximum degree 4. We also prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {APX}\)-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\). Finally, when \(k=1\), we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.  相似文献   

11.
Sequence alignment is a central problem in bioinformatics. The classical dynamic programming algorithm aligns two sequences by optimizing over possible insertions, deletions and substitutions. However, other evolutionary events can be observed, such as inversions, tandem duplications or moves (transpositions). It has been established that the extension of the problem to move operations is NP-complete. Previous work has shown that an extension restricted to non-overlapping inversions can be solved in O(n 3) with a restricted scoring scheme. In this paper, we show that the alignment problem extended to non-overlapping moves can be solved in O(n 5) for general scoring schemes, O(n 4log n) for concave scoring schemes and O(n 4) for restricted scoring schemes. Furthermore, we show that the alignment problem extended to non-overlapping moves, inversions and tandem duplications can be solved with the same time complexities. Finally, an example of an alignment with non-overlapping moves is provided. A preliminary version of this paper appeared in the Proceedings of COCOON 2007, LNCS, vol. 4598, pp. 151–164.  相似文献   

12.
Let \(G=(V,\, E)\) be a given directed graph in which every edge e is associated with two nonnegative costs: a weight w(e) and a length l(e). For a pair of specified distinct vertices \(s,\, t\in V\), the k-(edge) disjoint constrained shortest path (kCSP) problem is to compute k (edge) disjoint paths between s and t, such that the total length of the paths is minimized and the weight is bounded by a given weight budget \(W\in \mathbb {R}_{0}^{+}\). The problem is known to be \({\mathcal {NP}}\)-hard, even when \(k=1\) (Garey and Johnson in Computers and intractability, 1979). Approximation algorithms with bifactor ratio \(\left( 1\,+\,\frac{1}{r},\, r\left( 1\,+\,\frac{2(\log r\,+\,1)}{r}\right) (1\,+\,\epsilon )\right) \) and \((1\,+\,\frac{1}{r},\,1\,+\,r)\) have been developed for \(k=2\) in Orda and Sprintson (IEEE INFOCOM, pp. 727–738, 2004) and Chao and Hong (IEICE Trans Inf Syst 90(2):465–472, 2007), respectively. For general k, an approximation algorithm with ratio \((1,\, O(\ln n))\) has been developed for a weaker version of kCSP, the k bi-constraint path problem which is to compute k disjoint st-paths satisfying a given length constraint and a weight constraint simultaneously (Guo et al. in COCOON, pp. 325–336, 2013). This paper first gives an approximation algorithm with bifactor ratio \((2,\,2)\) for kCSP using the LP-rounding technique. The algorithm is then improved by adopting a more sophisticated method to round edges. It is shown that for any solution output by the improved algorithm, there exists a real number \(0\le \alpha \le 2\) such that the weight and the length of the solution are bounded by \(\alpha \) times and \(2-\alpha \) times of that of an optimum solution, respectively. The key observation of the ratio proof is to show that the fractional edges, in a basic solution against the proposed linear relaxation of kCSP, exactly compose a graph in which the degree of every vertex is exactly two. At last, by a novel enhancement of the technique in Guo et al. (COCOON, pp. 325–336, 2013), the approximation ratio is further improved to \((1,\,\ln n)\).  相似文献   

13.
The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges (i.e., the congestion) is minimized. The investigations of critical graphs and their structures are meaningful in the study of a graph-theoretic parameters. We study the structures of k-cutwidth \((k>1)\) critical trees, and use them to characterize the set of all 4-cutwidth critical trees.  相似文献   

14.
In the p-Cluster Vertex Deletion problem, we are given a graph \(G=(V,E)\) and two parameters k and p, and the goal is to determine if there exists a subset X of at most k vertices such that the removal of X results in a graph consisting of exactly p disjoint maximal cliques. Let \(r=p/k\). In this paper, we design a branching algorithm with time complexity \(O(\alpha ^k+|V||E|)\), where \(\alpha \) depends on r and has a rough upper bound \(\min \{1.618^{1+r},2\}\). With a more precise analysis, we show that \(\alpha =1.28\cdot 3.57^{r}\) for \(r\le 0.219\); \(\alpha =(1-r)^{r-1}r^{-r}\) for \(0.219< r<1/2\); and \(\alpha =2\) for \(r\ge 1/2\), respectively. Our algorithm also works with the same time complexity for the variant that the number of clusters is at most p. Our result improves the previous best time complexity \(O^*(1.84^{p+k})\) and implies that for fixed p the problem can be solved as efficiently as Vertex Cover.  相似文献   

15.
In a graph G, a vertex dominates itself and its neighbors. A subset SeqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of GS at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ m , and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r k (G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r k (G m ) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r k (G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r k (G,ddom) < 3n/4 + 2k/7. These bounds are sharp. Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

16.
We consider the k-level capacitated facility location problem (k-CFLP), which is a natural variant of the classical facility location problem and has applications in supply chain management. We obtain the first (combinatorial) approximation algorithm with a performance factor of \(k+2+\sqrt{k^{2}+2k+5}+\varepsilon\) (ε>0) for this problem.  相似文献   

17.
Let j and k be two positive integers with jk. An L(j,k)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between labels of any two adjacent vertices is at least j, and the difference between labels of any two vertices that are at distance two apart is at least k. The minimum range of labels over all L(j,k)-labellings of a graph G is called the λ j,k -number of G, denoted by λ j,k (G). A σ(j,k)-circular labelling with span m of a graph G is a function f:V(G)→{0,1,…,m−1} such that |f(u)−f(v)| m j if u and v are adjacent; and |f(u)−f(v)| m k if u and v are at distance two apart, where |x| m =min {|x|,m−|x|}. The minimum m such that there exists a σ(j,k)-circular labelling with span m for G is called the σ j,k -number of G and denoted by σ j,k (G). The λ j,k -numbers of Cartesian products of two complete graphs were determined by Georges, Mauro and Stein ((2000) SIAM J Discret Math 14:28–35). This paper determines the λ j,k -numbers of direct products of two complete graphs and the σ j,k -numbers of direct products and Cartesian products of two complete graphs. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. This work is partially supported by FRG, Hong Kong Baptist University, Hong Kong; NSFC, China, grant 10171013; and Southeast University Science Foundation grant XJ0607230.  相似文献   

18.
In the k-level facility location problem (FLP), we are given a set of facilities, each associated with one of k levels, and a set of clients. We have to connect each client to a chain of opened facilities spanning all levels, minimizing the sum of opening and connection costs. This paper considers the k-level stochastic FLP, with two stages, when the set of clients is only known in the second stage. There is a set of scenarios, each occurring with a given probability. A facility may be opened in any stage, however, the cost of opening a facility in the second stage depends on the realized scenario. The objective is to minimize the expected total cost. For the stage-constrained variant, when clients must be served by facilities opened in the same stage, we present a \((4-o(1))\)-approximation, improving on the 4-approximation by Wang et al. (Oper Res Lett 39(2):160–161, 2011) for each k. In the case with \(k=2,\,3\), the algorithm achieves factors 2.56 and 2.78, resp., which improves the \((3+\epsilon )\)-approximation for \(k=2\) by Wu et al. (Theor Comput Sci 562:213–226, 2015). For the non-stage-constrained version, we give the first approximation for the problem, achieving a factor of 3.495 for the case with \(k = 2\), and \(2k-1+o(1)\) in general.  相似文献   

19.
In this paper, we consider an extension of the classical facility location problem, namely k-facility location problem with linear penalties. In contrast to the classical facility location problem, this problem opens no more than k facilities and pays a penalty cost for any non-served client. We present a local search algorithm for this problem with a similar but more technical analysis due to the extra penalty cost, compared to that in Zhang (Theoretical Computer Science 384:126–135, 2007). We show that the approximation ratio of the local search algorithm is \(2 + 1/p + \sqrt{3+ 2/p+ 1/p^2} + \epsilon \), where \(p \in {\mathbb {Z}}_+\) is a parameter of the algorithm and \(\epsilon >0\) is a positive number.  相似文献   

20.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号