共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
空间回归模型由于引入了空间地理信息而使得其参数估计变得复杂,因为主要采用最大似然法,致使一般人认为在空间回归模型参数估计中不存在最小二乘法。通过分析空间回归模型的参数估计技术,研究发现,最小二乘法和最大似然法分别用于估计空间回归模型的不同的参数,只有将两者结合起来才能快速有效地完成全部的参数估计。数理论证结果表明,空间回归模型参数最小二乘估计量是最佳线性无偏估计量。空间回归模型的回归参数可以在估计量为正态性的条件下而实施显著性检验,而空间效应参数则不可以用此方法进行检验。 相似文献
3.
具有良好可读性和稳健性的变系数模型在各学科领域应用广泛.本文构建了一种新的随机效应变系数空间自回归面板模型,运用截面极大似然估计方法,导出了模型的估计量,证明其具备一致性和渐近正态性,蒙特卡洛模拟研究显示估计量的小样本表现效果良好. 相似文献
4.
传统的空间面板数据模型利用截距项来体现空间异质性,往往无法完全体现出空间异质性,文章构建一种系数随空间个体变动而变动的空间自回归模型,利用系数来考察空间异质性,并可以考察经济关系以及空间关系的个体特征。在一定的模型设定条件下,文章给出了该模型的完全信息极大似然估计,并推导了该估计量的渐进分布。 相似文献
5.
本文对扰动项存在跨时期的异方差、但不存在序列相关的时变系数空间自回归模型提出了极大似然的估计方法,并证明了该估计量的一致性,同时,证明了该估计量渐进服从正态分布,由此说明该估计量具有优良的大样本性质。同时,我们还对本文所提出估计量的小样本性质进行了数值模拟。本文研究表明,估计量虽然在N较小时偏差较大,但是随着N的不断增加,估计量偏差减小,体现了比较优良的渐进性质。同时,估计量的偏差会随着时期数的增加而变大,这说明本文所提出的估计方法适用于个体数较多、时期数较少的短面板数据。 相似文献
6.
7.
对于存在测量误差的面板数据自回归模型,首先讨论了POLS(Pooling OLS)和LSDV(least square of dummy variable)估计存在向零的衰减偏差及其非一致性,其次对于混合自回归模型和个体固定效应自回归模型给出了工具变量应满足的条件.研究发现这时工具变量的选择是十分困难的. 相似文献
8.
基于辅助回归模型的空间Hausman检验 总被引:1,自引:0,他引:1
基于面板数据空间误差分量模型,提出空间Hausman检验,并通过数理推导,构造辅助回归模型的空间Hausman检验,进而通过Monte Carlo模拟实验,研究空间Hausman检验,以及辅助回归空间Hausman检验的有限样本性质。研究结果表明,空间Hausman检验能有效矫正空间面板数据下经典Hausman检验的水平扭曲,但随着空间相关性和样本量增大,其水平扭曲偏离理想值;辅助回归空间Hausman检验始终保持理想的水平扭曲。此外,二者均具有优越的检验功效。 相似文献
9.
存在自相关时的自相关检验和参数估计是基础计量经济学的一个重要内容,并且存在自相关时的原模型已转化为自回归分布滞后模型。讨论存在自相关时的自相关检验和参数估计问题,提出了一种基于自回归分布滞后模型的自相关检验法,并同时给出了相应的参数估计。 相似文献
10.
与普通最小二乘法相比,线性模型参数的极大似然估计,在一般的条件下也具有很好的性质;而实际中,在进行统计推断之前,我们往往对参数的信息有一定把握。文章将利用参数的先验信息即先验分布,构造了线性模型参数的后验极大似然估计,并在两种先验分布的情形,给出了具体的结果。 相似文献
11.
The impact of errors in the factor levels is examined on the estimation of parameters in second-order response models. Errors can occur in setting the factor levels for response surface and robust parameter design models. These errors can lead to heterogeneity of variances in model errors that make ordinary least squares estimation inappropriate. Weighted least squares and maximum likelihood estimation approaches are developed as viable alternatives where it is assumed the variances and covariances of the errors are known. Performance of these estimation techniques are examined in simulation studies for two examples. Another example is given that applies these results. 相似文献
12.
Diarmuid O'driscoll 《统计学通讯:模拟与计算》2013,42(9):1373-1382
The slope of the best fit line from minimizing the sum of the squared oblique errors is the root of a polynomial of degree four. This geometric view of measurement errors is used to give insight into the performance of various slope estimators for the measurement error model including an adjusted fourth moment estimator introduced by Gillard and Iles (2005) to remove the jump discontinuity in the estimator of Copas (1972). The polynomial of degree four is associated with a minimun deviation estimator. A simulation study compares these estimators showing improvement in bias and mean squared error. 相似文献
13.
Litong Wang 《统计学通讯:理论与方法》2013,42(8):1563-1571
In this article, we consider quasi-minimax estimation in the linear regression model where some covariates are measured with additive errors. When measurement errors are directly ignored the minimax risk of the resulting estimator can be large. By correcting the attenuation we propose a penalized quadratic risk function. A simulation study is conducted to illustrate the performance of the proposed estimators. 相似文献
14.
The Weibull extension model is a useful extension of the Weibull distribution, allowing for bathtub shaped hazard rates among other things. Here, we consider estimation of the PDF and the CDF of the Weibull extension model. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least squares (LS) estimator, and weighted least squares (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others. 相似文献
15.
《Econometric Reviews》2013,32(4):307-335
Abstract Estimation of a cross‐sectional spatial model containing both a spatial lag of the dependent variable and spatially autoregressive disturbances are considered. [Kelejian and Prucha (1998)]described a generalized two‐stage least squares procedure for estimating such a spatial model. Their estimator is, however, not asymptotically optimal. We propose best spatial 2SLS estimators that are asymptotically optimal instrumental variable (IV) estimators. An associated goodness‐of‐fit (or over identification) test is available. We suggest computationally simple and tractable numerical procedures for constructing the optimal instruments. 相似文献
16.
The purpose of this article is to investigate estimation and hypothesis testing by maximum likelihood and method of moments in functional models within the class of elliptical symmetric distributions. The main results encompass consistency and asymptotic normality of the method of moments estimators. Also, the asymptotic covariance matrix of the maximum likelihood estimator is derived, extending some existing results in elliptical distributions. A measure of asymptotic relative efficiency is reported. Wald-type statistics are considered and numerical results obtained by Monte Carlo simulation to investigate the performance of estimators and tests are provided for Student-t and contaminated normal distributions. An application to a real dataset is also included. 相似文献
17.
《统计学通讯:模拟与计算》2013,42(3):799-833
Abstract In a quantitative linear model with errors following a stationary Gaussian, first-order autoregressive or AR(1) process, Generalized Least Squares (GLS) on raw data and Ordinary Least Squares (OLS) on prewhitened data are efficient methods of estimation of the slope parameters when the autocorrelation parameter of the error AR(1) process, ρ, is known. In practice, ρ is generally unknown. In the so-called two-stage estimation procedures, ρ is then estimated first before using the estimate of ρ to transform the data and estimate the slope parameters by OLS on the transformed data. Different estimators of ρ have been considered in previous studies. In this article, we study nine two-stage estimation procedures for their efficiency in estimating the slope parameters. Six of them (i.e., three noniterative, three iterative) are based on three estimators of ρ that have been considered previously. Two more (i.e., one noniterative, one iterative) are based on a new estimator of ρ that we propose: it is provided by the sample autocorrelation coefficient of the OLS residuals at lag 1, denoted r(1). Lastly, REstricted Maximum Likelihood (REML) represents a different type of two-stage estimation procedure whose efficiency has not been compared to the others yet. We also study the validity of the testing procedures derived from GLS and the nine two-stage estimation procedures. Efficiency and validity are analyzed in a Monte Carlo study. Three types of explanatory variable x in a simple quantitative linear model with AR(1) errors are considered in the time domain: Case 1, x is fixed; Case 2, x is purely random; and Case 3, x follows an AR(1) process with the same autocorrelation parameter value as the error AR(1) process. In a preliminary step, the number of inadmissible estimates and the efficiency of the different estimators of ρ are compared empirically, whereas their approximate expected value in finite samples and their asymptotic variance are derived theoretically. Thereafter, the efficiency of the estimation procedures and the validity of the derived testing procedures are discussed in terms of the sample size and the magnitude and sign of ρ. The noniterative two-stage estimation procedure based on the new estimator of ρ is shown to be more efficient for moderate values of ρ at small sample sizes. With the exception of small sample sizes, REML and its derived F-test perform the best overall. The asymptotic equivalence of two-stage estimation procedures, besides REML, is observed empirically. Differences related to the nature, fixed or random (uncorrelated or autocorrelated), of the explanatory variable are also discussed. 相似文献
18.
Liang Wang 《Journal of Statistical Computation and Simulation》2018,88(4):629-645
As an applicable and flexible lifetime model, the two-parameter generalized half-normal (GHN) distribution has been received wide attention in the field of reliability analysis and lifetime study. In this paper maximum likelihood estimates of the model parameters are discussed and we also proposed corresponding bias-corrected estimates. Unweighted and weighted least squares estimates for the parameters of the GHN distribution are also presented for comparison purpose. Moreover, the likelihood ratio test is provided as complementary. Simulation study and illustrative examples are provided to compare the performance of the proposed methods. 相似文献
19.
The effect of influental observation son the parameter estimates of ordinary least squares regression models has received considerable a t t e n t i o n fn the last decade. However, very little attention has been given to the problem of influential observation sinthea naysis of variace . The purpose of this paper is to show by way of examples that in fluential observations can alter the conclusions of tests of hypotheses in the analysis of variance . Regression diagno stics for identifying both extreme points and out liers can be used toreveal potential data and design problems. 相似文献
20.
This paper compares methods of estimation for the parameters of a Pareto distribution of the first kind to determine which method provides the better estimates when the observations are censored, The unweighted least squares (LS) and the maximum likelihood estimates (MLE) are presented for both censored and uncensored data. The MLE's are obtained using two methods, In the first, called the ML method, it is shown that log-likelihood is maximized when the scale parameter is the minimum sample value. In the second method, called the modified ML (MML) method, the estimates are found by utilizing the maximum likelihood value of the shape parameter in terms of the scale parameter and the equation for the mean of the first order statistic as a function of both parameters. Since censored data often occur in applications, we study two types of censoring for their effects on the methods of estimation: Type II censoring and multiple random censoring. In this study we consider different sample sizes and several values of the true shape and scale parameters. Comparisons are made in terms of bias and the mean squared error of the estimates. We propose that the LS method be generally preferred over the ML and MML methods for estimating the Pareto parameter γ for all sample sizes, all values of the parameter and for both complete and censored samples. In many cases, however, the ML estimates are comparable in their efficiency, so that either estimator can effectively be used. For estimating the parameter α, the LS method is also generally preferred for smaller values of the parameter (α ≤4). For the larger values of the parameter, and for censored samples, the MML method appears superior to the other methods with a slight advantage over the LS method. For larger values of the parameter α, for censored samples and all methods, underestimation can be a problem. 相似文献