首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the flow of material on the shop floor involves releasing and dispatching jobs to meet customer due-date requirements while attempting to keep operating costs low. This report presents an evaluation of five releasing mechanisms and four dispatching rules under various levels of aggregate due-date tightness, shop cost structure, and machine utilization using simulation. The performance criteria of total shop cost, jobs on shop floor, deviation from due dates, and job queue time are collected to demonstrate the interactive nature of releasing and dispatching on shop performance.  相似文献   

2.
The primary objective of this study is to examine the performance of order-based dispatching rules in a general job shop, where the environmental factors are shop utilization and due date tightness. An order is defined as a collection of jobs that are shipped as a group—an order—to the customer, only on completion of the last job of the order. We specifically compare dispatching rules from past job-based studies to some rules adapted to encompass order characteristics. Standard flow time and tardiness measures are used, but in addition, we introduce measures that combine average performance with variation in an attempt to capture the performance of a majority of the orders processed in the shop. Of the 16 dispatching rules tested, our results show that four of the simple rules dominate the others. We also found that order-based rules perform better than their job-based counterparts. The study makes use of multivariate statistical analysis, in addition to the usual univariate tests, which can provide additional insight to managers using multiple criteria in their decision process.  相似文献   

3.
James C Goodwin  Jr 《Omega》1978,6(6):493-500
Problems are encountered in a job shop which has a fixed capacity if the total work content of the jobs passing through the shop increases sufficiently. Even the use of effective priority dispatching rules and/or expediting does not adequately shorten the queues which develop if the total work content continually exceeds shop capacity. To avoid losing job orders because the orders are unduly delayed, the job shop might resort to overtime usage. This study examines the efficient and economic use of overtime to relieve the backlog problem and uses overtime as the basic criterion for evaluation of overtime usage. The study employs GPSS V programming language to simulate a hypothetical job shop. The shop is loaded to various proportions of its normal capacity and various levels of overtime are tested. Findings show that overtime should not be assigned indiscriminately but rather should be based on a shop's unique conditions of overtime cost, the priority rule being employed, and the level of capacity utilization. Marginal benefit-cost ratio curves are developed to determine whether overtime usage is economically reasonable. These curves may also be used to determine the maximum or limiting amount of overtime to use under specific shop conditions.  相似文献   

4.

Although the academic contribution to job shop scheduling is abundant, its impact on practice has been minimal. The most preferred approach to job shop scheduling in the industry is dispatching rules. A major criticism against dispatching rules is that there is no single universal rule. The effective choice of dispatching rules depends on the scheduling criterion and existing job shop conditions. In this paper, the authors have proposed a scheduling method based on the analytic hierarchy process, that dynamically selects the most appropriate dispatching rule from several candidate rules. The selection is based on the existing job shop conditions. This method is applied to two formal job shop problems, and the results for single dispatching rules are inferior to the method proposed in this paper.  相似文献   

5.
Priority dispatching rules and shop load affect job-shop performance. This paper evaluates ten different priority dispatching rules with respect to six different performance criteria under light, medium and heavy shop loads. Simulation was used as a tool to determine the rankings of the dispatching rules for a given shop load and performance criteria. A comparative study was conducted to investigate the performance of these rules. Two rules, ‘shortest processing time” and ‘least work remaining’, performed well under criteria related to the processing time. It was found that the rules that perform well in average and r.m.s. tardiness perform poorly under percentage-of-jobs-late criterion. The experimental results are conveyed with critical comments on the performance of the dispatching rules under different loading conditions of the shop.  相似文献   

6.
This paper describes a global job shop scheduling procedure that uses a genetic algorithm to find a good schedule. Unlike previously considered algorithms, this procedure has been implemented in the scheduling system for a manufacturing facility and has led to improved scheduling. This facility is a semiconductor test area. The test area is a job shop and has sequence-dependent setup times at some operations. The concern of management is to meet their customer due dates and to increase throughput. This requires the coordination of many resources, a task beyond the ability of simple dispatching rules. We discuss a centralized procedure that can find a good schedule through the use of a detailed scheduling model and a genetic algorithm that searches over combinations of dispatching rules. We discuss our effort in developing a system that models the shop, creates schedules for the test area personnel, and makes a number of contributions to test area management.  相似文献   

7.
This paper applies stochastic dominance (SD) preference-ordering criteria to job shop scheduling rules. A simulation model of a hypothetical dual-constrained job shop is used to derive several measures of shop performance for a number of dispatching/due-date scheduling policies. The results presented suggest that previous research conclusions concerning the relative performance of dispatching scheduling rules may need to be reconsidered if production schedulers are risk-averse utility maximizers.  相似文献   

8.
A two-phase approach is used to examine the impact of job scheduling rules and tool selection policies for a dynamic job shop system in a tool-shared, flexible manufacturing environment. The first phase develops a generalized simulation model and analyses 'simple' job scheduling rules and tool selection policies under various operating scenarios. The results from this investigation are then used to develop and analyse various bi-criteria rules in the second phase of this study. The results show that the scheduling rules have the most significant impact on system performance, particularly at high shop load levels. Tool selection policies affect some of the performance measures, most notably, proportion of tardy jobs, to a lesser degree. Higher machine utilizations can be obtained at higher tool duplication levels but at the expense of increased tooling costs and lower tool utilization. The results also show that using different processing time distributions may have a significant impact on shop performance.  相似文献   

9.
Dominic Sculli 《Omega》1980,8(2):227-234
The article reports the results of an experimental investigation into priority dispatching rules for a job shop with assembly operations. A job is made up of several parts, where parts are individual entities requiring several operations in different machine centres. The study was directed towards rules which attempt to co-ordinate the completion time of parts required in the same job. This mainly involves rules that utilise job status information such as operation float, number of parts completed, and number of operations remaining on each part. Results indicate that job status information improves most of the measures of performance used.  相似文献   

10.
This paper reports the results of a study of the use of heterogeneous dispatching rules for the scheduling of work in a job shop. The methodology employed included discrete event simulation, using rule combinations determined by prior genetic algorithm searches and generalization using neural networks. Eight dispatching rules were considered, including first in first out (FIFO), earliest due date ( EDD), shortest processing time (SPT), slack/ number of operations (SLK), critical ratio (CR), modified due date (MDD), modified operation due date (MOD), and apparent tardiness cost (ATC). A three-machine job shop was studied, in which three work organizations were employed, pure flow (fixed sequence), pure job shop ( random sequence), and a hybrid shop where flow is random but with unequal probabilities. Three levels of machine loading were used and average tardiness was used as the performance measure. In most cases, modified due date and apparent tardiness cost were the best rules. The application of the best rules effected the results primarily when applied to bottleneck machines or the first machine in a pure flow shop. Nearly any other rule was acceptable on non-botdeneck machines except FIFO and CR, which consistently perform poorly. No major advantage of mixing rules was found.  相似文献   

11.
Protecting throughput from variance is the key to achieving lean. Workload control (WLC) accomplishes this in complex make‐to‐order job shops by controlling lead times, capacity, and work‐in‐process (WIP). However, the concept has been dismissed by many authors who believe its order release mechanism reduces the effectiveness of shop floor dispatching and increases work center idleness, thereby also increasing job tardiness results. We show that these problems have been overcome. A WLC order release method known as “LUMS OR” (Lancaster University Management School order release) combines continuous with periodic release, allowing the release of work to be triggered between periodic releases if a work center is starving. This paper refines the method based on the literature (creating “LUMS COR” [Lancaster University Management School corrected order release]) before comparing its performance against the best‐performing purely periodic and continuous release rules across a range of flow directions, from the pure job shop to the general flow shop. Results demonstrate that LUMS COR and the continuous WLC release methods consistently outperform purely periodic release and Constant WIP. LUMS COR is considered the best solution in practice due to its excellent performance and ease of implementation. Findings have significant implications for research and practice: throughput times and job tardiness results can be improved simultaneously and order release and dispatching rules can complement each other. Thus, WLC represents an effective means of implementing lean principles in a make‐to‐order context.  相似文献   

12.
A new fuzzy logic dispatching method is presented ff which o ers an improvement over certain existing common dispatching rules with respect to the performance measures, number of late parts, maximum part lateness, average producff tion times and machine bu er levels. The fuzzy logic dispatcher incorporates a wider range of scheduling issues than those considered by most dispatching rules, considers certain control ff issues that e ect scheduling, contains mechanisms for optimization and also allows for the addition of more control or scheduling rules.  相似文献   

13.

This work is an investigation about the relative effectiveness of two approaches to scheduling in flexible flow shops: one approach advocating the possible use of different dispatching rules at different stages of the flow shop, and the other suggesting the use of the same dispatching rule at all the stages of the flow shop. In the latter approach, the dispatching rule contains the information related to both process time and duedate. Both approaches aim at the minimization of measures related to flowtime and tardiness of jobs. This paper essentially is an attempt at exploring the relative effectiveness of these two approaches to scheduling.  相似文献   

14.
We investigate the performance of capacity-sensitive order review and release (ORR) procedures in job shop environments that have not been previously explored. Previous research has ignored the case of job shops which must perform to very tight due-dates because of time-sensitive customers. We propose and test a new capacity sensitive ORR procedure called path based bottleneck (PBB) in such environments, along with the modified infinite loading (MIL) procedure which has been shown to work well in several studies. We compare the performance of these two controlled release rules with that of immediate release rule under different conditions of capacity utilization and customer specified exogenous duedates. Our results indicate that PBB performs well in lowering total costs when due-dates are tight, while MIL is a better procedure with relatively loose to medium due-dates. We also show that in many cases, the shortest processing time (SPT) dispatching rule is a superior performer than a due-date based rule like critical ratio (CR); a conclusion which is contrary to the existing research in this area. In addition, the shop floor control policies recommended are shown to be sensitive to the cost structure of the firm. The managerial implications of this research in providing effective shop floor control in job shops operating under tight due-date conditions are also discussed.  相似文献   

15.
One of the most challenging production decisions in the semiconductor testing industry is to select the most appropriate dispatching rule which can be employed on the shop floor to achieve high manufacturing performance against a changing environment. Job dispatching in the semiconductor final testing industry is severely constrained by many resources conflicts and has to fulfil a changing performance required by customers and plant managers. In this study we have developed a hybrid knowledge discovery model, using a combination of a decision tree and a back-propagation neural network, to determine an appropriate dispatching rule using production data with noise information, and to predict its performance. We built an object-oriented simulation model to mimic shop floor activities of a semiconductor testing plant and collected system status and resultant performances of several typical dispatching rules, earliest-due-date (EDD) rule, first-come-first-served rule, and a practical dispatching heuristic taking set-up reduction into consideration. Performances such as work-in-process, set-up overhead, completion time, and tardiness are examined. Experiments have shown that the proposed decision tree found the most suitable dispatching rule given a specific performance measure and system status, and the back propagation neural network then predicted precisely the performance of the selected rule.  相似文献   

16.

Semiconductor wafer fabrication involves very complex process routing, and reducing flow times is very important. This study reports a search for better dispatch rules for achieving the goal of reducing flow times, while maintaining high machine utilization. We explored a new simulation-based dispatch rule and a queue prediction dispatch rule. Using simulation experiments and an industrial data set, we also compared several other dispatch rules commonly used in semiconductor manufacturing with our proposed dispatch rules. Among these rules, in addition to the simulation-based dispatching rule, the shortest-remaining-processing-time, earliest-due-date and leastslack rules also performed well in terms of reducing flow times. The reasons behind these good rules are discussed in this paper. Based on the previous works and this study, accurately predicting and effectively utilizing future flow times can improve the quality of production management decisions.  相似文献   

17.
Abstract. This paper investigates the effects of four simple dispatching rules on just-in-time production related performance measures of mean and maximum absolute lateness. The rules used are modified due date (MDD), shortest processing time (SPT), earliest due date (EDD), and first in first out (FIFO). A single machine is used under three utilization levels. Due-dates are set according to total work content rule. The results indicate that each rule performs well under certain conditions. The MDD rule is the best one to minimize mean absolute lateness. The EDD and FIFO rules do well in minimizing the maximum absolute lateness. Economic interpretation of these performance measures are also discussed.  相似文献   

18.
The early/tardy problem is one of the most vexing pieces of the complex production scheduling decision process. So far most of the research has been on single-machine environments. Hence, we considered the weighted early/tardy scheduling problem in a simulated dynamic multimachine job shop. We analyzed controlled job-release and dispatch rules using time and cost information at a variety of stationary and nonstationary utilization rates, due-date allowances, and early/tardy cost levels. We found a newly developed method for controlling the release for all job operations using early/tardy cost information, superior to other release mechanisms overall in both our stationary and nonstationary analyses. We found immediate release useful at many high utilization conditions and a gateway-only release method best in many low utilization conditions. A modified version of a single-machine early/tardy dispatch method was clearly superior to the dispatch rules for almost all the simulated shop conditions.  相似文献   

19.
The management of a panel block shop in a shipyard is a complex process that entails the largest amount of work and in which many decisions are involved. Shipbuilders have considered the process as a bottleneck since every panel for every ship must be processed through the shop. The objective of this research is to carry out a materials flow analysis to maximise process productivity and to place simulation optimisation technology in the hands of decision makers, such as production planners and supervisors. In this article, a production execution planning system is proposed for panel block operations utilising discrete-event simulation and simulated annealing. The simulation model was validated using a real production scenario and the comparison showed a very favourable agreement between the actual panel shop and the simulation model. The proposed system supports production planners by general dispatching rules and optimisation to make better scheduling decisions on the shop floor. The system will provide a complete schedule that is at least as clear and accurate as any schedule currently obtained.  相似文献   

20.
Depending on the techniques employed, the due date assignment, release, and sequencing procedures in job shop scheduling may depend on one another. This research investigates the effects of these interactions with a simulation model of a dynamic five-machine job shop in which early shipments are prohibited. Performance of the system is measured primarily in terms of the total cost (work-in-process cost, finished goods holding cost, and late penalty) incurred by the shop, but a number of non-cost performance measures are also reported. The results support existence of a three-way interaction between the due date, release, and sequencing procedures as well as interaction between shop utilization and procedure combination. Statistical tests are used to identify those rules that perform best both overall and in combination with other rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号