共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors show how to test the goodness‐of‐fit of a linear regression model when there are missing data in the response variable. Their statistics are based on the L2 distance between nonparametric estimators of the regression function and a ‐consistent estimator of the same function under the parametric model. They obtain the limit distribution of the statistics and check the validity of their bootstrap version. Finally, a simulation study allows them to examine the behaviour of their tests, whether the samples are complete or not. 相似文献
2.
Mhamed Mesfioui Jean‐François Quessy Marie‐Hélène Toupin 《Revue canadienne de statistique》2009,37(1):80-101
A goodness‐of‐fit procedure is proposed for parametric families of copulas. The new test statistics are functionals of an empirical process based on the theoretical and sample versions of Spearman's dependence function. Conditions under which this empirical process converges weakly are seen to hold for many families including the Gaussian, Frank, and generalized Farlie–Gumbel–Morgenstern systems of distributions, as well as the models with singular components described by Durante [Durante ( 2007 ) Comptes Rendus Mathématique. Académie des Sciences. Paris, 344, 195–198]. Thanks to a parametric bootstrap method that allows to compute valid P‐values, it is shown empirically that tests based on Cramér–von Mises distances keep their size under the null hypothesis. Simulations attesting the power of the newly proposed tests, comparisons with competing procedures and complete analyses of real hydrological and financial data sets are presented. The Canadian Journal of Statistics 37: 80‐101; 2009 © 2009 Statistical Society of Canada 相似文献
3.
Caterina Conigliani J. Ivn Castro Anthony O'HAGAN 《Revue canadienne de statistique》2000,28(2):327-342
The classical chi‐square test of goodness of fit compares the hypothesis that data arise from some parametric family of distributions, against the nonparametric alternative that they arise from some other distribution. However, the chi‐square test requires continuous data to be grouped into arbitrary categories. Furthermore, as the test is based upon an approximation, it can only be used if there are sufficient data. In practice, these requirements are often wasteful of information and overly restrictive. The authors explore the use of the fractional Bayes factor to obtain a Bayesian alternative to the chi‐square test when no specific prior information is available. They consider the extent to which their methodology can handle small data sets and continuous data without arbitrary grouping. 相似文献
4.
Alberto Contreras‐Cristn Richard A. Lockhart Michael A. Stephens Shaun Z. Sun 《Revue canadienne de statistique》2019,47(4):560-579
Priors are introduced into goodness‐of‐fit tests, both for unknown parameters in the tested distribution and on the alternative density. Neyman–Pearson theory leads to the test with the highest expected power. To make the test practical, we seek priors that make it likely a priori that the power will be larger than the level of the test but not too close to one. As a result, priors are sample size dependent. We explore this procedure in particular for priors that are defined via a Gaussian process approximation for the logarithm of the alternative density. In the case of testing for the uniform distribution, we show that the optimal test is of the U‐statistic type and establish limiting distributions for the optimal test statistic, both under the null hypothesis and averaged over the alternative hypotheses. The optimal test statistic is shown to be of the Cramér–von Mises type for specific choices of the Gaussian process involved. The methodology when parameters in the tested distribution are unknown is discussed and illustrated in the case of testing for the von Mises distribution. The Canadian Journal of Statistics 47: 560–579; 2019 © 2019 Statistical Society of Canada 相似文献
5.
Abraham Martín del Campo Sarah Cepeda Caroline Uhler 《Scandinavian Journal of Statistics》2017,44(2):285-306
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness of fit. Here, we propose various test statistics and an exact goodness‐of‐fit test for the finite‐lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness‐of‐fit testing using a Monte Carlo approach. However, finding a Markov basis is often computationally intractable. Thus, we develop a Monte Carlo method for exact goodness‐of‐fit testing for the Ising model that avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane. 相似文献
6.
Abstract. Goodness‐of‐fit tests are proposed for the skew‐normal law in arbitrary dimension. In the bivariate case the proposed tests utilize the fact that the moment‐generating function of the skew‐normal variable is quite simple and satisfies a partial differential equation of the first order. This differential equation is estimated from the sample and the test statistic is constructed as an L 2 ‐type distance measure incorporating this estimate. Extension of the procedure to dimension greater than two is suggested whereas an effective bootstrap procedure is used to study the behaviour of the new method with real and simulated data. 相似文献
7.
Abstract. A goodness‐of‐fit test for continuous‐time models is developed that examines if the parameter estimates are consistent with another for different sampling frequencies. The test compares parameter estimates obtained from estimating functions for downsamples of the data. We prove asymptotic results for stationary and ergodic processes, and apply the downsampling test to linear drift diffusions. Simulations indicate that the test is quite powerful in detecting non‐Markovian deviations from the linear drift diffusions. 相似文献
8.
For testing the fit of the inverse Gaussian distribution with unknown parameters, the empirical distribution-function statistic A2 is studied. Two procedures are followed in constructing the test statistic; they yield the same asymptotic distribution. In the first procedure the parameters in the distribution function are directly estimated, and in the second the distribution function is estimated by its Rao-Blackwell distribution estimator. A table is given for the asymptotic critical points of A2. These are shown to depend only on the ratio of the unknown parameters. An analysis is provided of the effect of estimating the ratio to enter the table for A2. This analysis enables the proposal of the complete operating procedure, which is sustained by a Monte Carlo study. 相似文献
9.
Adel I Bargal 《统计学通讯:理论与方法》2013,42(2):537-549
In this paper properties of two estimators of Cpm are investigated in terms of changes in the process mean and variance. The bias and mean squared error of these estimators are derived. It can be shown that the estimate of Cpm proposed by Chan, Cheng and Spiring (1988) has smaller bias than the one proposed by Boyles (1991) and also has a smaller mean squared error under certain conditions. Various approximate confidence intervals for Cpm are obtained and are compared in terms of coverage probabilities, missed rate and average interval width. 相似文献
10.
Testing goodness‐of‐fit of commonly used genetic models is of critical importance in many applications including association studies and testing for departure from Hardy–Weinberg equilibrium. Case–control design has become widely used in population genetics and genetic epidemiology, thus it is of interest to develop powerful goodness‐of‐fit tests for genetic models using case–control data. This paper develops a likelihood ratio test (LRT) for testing recessive and dominant models for case–control studies. The LRT statistic has a closed‐form formula with a simple $\chi^{2}(1)$ null asymptotic distribution, thus its implementation is easy even for genome‐wide association studies. Moreover, it has the same power and optimality as when the disease prevalence is known in the population. The Canadian Journal of Statistics 41: 341–352; 2013 © 2013 Statistical Society of Canada 相似文献
11.
Richard A. Lockhart John J. Spinelli Michael A. Stephens 《Revue canadienne de statistique》2007,35(1):125-133
Choulakian, Lockhart & Stephens (1994) proposed Cramér‐von Mises statistics for testing fit to a fully specified discrete distribution. The authors give slightly modified definitions for these statistics and determine their asymptotic behaviour in the case when unknown parameters in the distribution must be estimated from the sample data. They also present two examples of applications. 相似文献
12.
The smooth goodness of fit tests are generalized to singly censored data and applied to the problem of testing Weibull (or extreme value) fit. Smooth tests, Pearson-type tests, and the spacings tests proposed by Mann, Schemer, and Fertig (1973) are compared on the basis of local asymptotic relative efficiency with respect to the asymptotic best test against generalized gamma alternatives, The smooth test of order one Is found to be most efficient for the generalized gamma alternatives. 相似文献
13.
ABSTRACTNakagami distribution is one of the most common distributions used to model positive valued and right skewed data. In this study, we interest goodness of fit problem for Nakagami distribution. Thus, we propose smooth tests for Nakagami distribution based on orthonormal functions. We also compare these tests with some classical goodness of fit tests such as Cramer–von Mises, Anderson–Darling, and Kolmogorov–Smirnov tests in respect to type-I error rates and powers of tests. Simulation study indicates that smooth tests give better results than these classical tests give in respect to almost all cases considered. 相似文献
14.
Abstract. We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model. Under this model, the points can be of one of three types: a ‘background point’ an ‘independent cluster point’ or a ‘dependent cluster point’. The background and independent cluster points are thought to exhibit ‘complete spatial randomness’, whereas the dependent cluster points are likely to occur close to previous cluster points. We demonstrate the flexibility of the model for producing point patterns with linear structures and propose to use the model as the likelihood in a Bayesian setting when analysing a spatial point pattern exhibiting linear structures. We illustrate this methodology by analysing two spatial point pattern datasets (locations of bronze age graves in Denmark and locations of mountain tops in Spain). 相似文献
15.
16.
17.
Steven G. From 《统计学通讯:理论与方法》2013,42(12):3167-3183
In this paper, a new test statistic is presented for testing the null hypothesis of equal multinomial cell probabilities versus various trend alternatives. Exact asymptotic critical values are obtained, The power of the test is compared with several other statistics considered by Choulakian et al (1995), The test is shown to have better power for certain trend alternatives. 相似文献
18.
《Scandinavian Journal of Statistics》2018,45(3):465-481
In statistical modelling, it is often of interest to evaluate non‐negative quantities that capture heterogeneity in the population such as variances, mixing proportions and dispersion parameters. In instances of covariate‐dependent heterogeneity, the implied homogeneity hypotheses are nonstandard and existing inferential techniques are not applicable. In this paper, we develop a quasi‐score test statistic to evaluate homogeneity against heterogeneity that varies with a covariate profile through a regression model. We establish the limiting null distribution of the proposed test as a functional of mixtures of chi‐square processes. The methodology does not require the full distribution of the data to be entirely specified. Instead, a general estimating function for a finite dimensional component of the model, that is, of interest is assumed but other characteristics of the population are left completely unspecified. We apply the methodology to evaluate the excess zero proportion in zero‐inflated models for count data. Our numerical simulations show that the proposed test can greatly improve efficiency over tests of homogeneity that neglect covariate information under the alternative hypothesis. An empirical application to dental caries indices demonstrates the importance and practical utility of the methodology in detecting excess zeros in the data. 相似文献
19.
20.
Jump–diffusion processes involving diffusion processes with discontinuous movements, called jumps, are widely used to model time-series data that commonly exhibit discontinuity in their sample paths. The existing jump–diffusion models have been recently extended to multivariate time-series data. The models are, however, still limited by a single parametric jump-size distribution that is common across different subjects. Such strong parametric assumptions for the shape and structure of a jump-size distribution may be too restrictive and unrealistic for multiple subjects with different characteristics. This paper thus proposes an efficient Bayesian nonparametric method to flexibly model a jump-size distribution while borrowing information across subjects in a clustering procedure using a nested Dirichlet process. For efficient posterior computation, a partially collapsed Gibbs sampler is devised to fit the proposed model. The proposed methodology is illustrated through a simulation study and an application to daily stock price data for companies in the S&P 100 index from June 2007 to June 2017. 相似文献