首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An individual measure of relative survival   总被引:2,自引:0,他引:2  
Summary.  Relative survival techniques are used to compare survival experience in a study cohort with that expected if background population rates apply. The techniques are especially useful when cause-specific death information is not accurate or not available as they provide a measure of excess mortality in a group of patients with a certain disease. Whereas these methods are based on group comparisons, we present here a transformation approach which instead gives for each individual an outcome measure relative to the appropriate background population. The new outcome measure is easily interpreted and can be analysed by using standard survival analysis techniques. It provides additional information on relative survival and gives new options in regression analysis. For example, one can estimate the proportion of patients who survived longer than a given percentile of the respective general population or compare survival experience of individuals while accounting for the population differences. The regression models for the new outcome measure are different from existing models, thus providing new possibilities in analysing relative survival data. One distinctive feature of our approach is that we adjust for expected survival before modelling. The paper is motivated by a study into the survival of patients after acute myocardial infarction.  相似文献   

2.
Summary.  In the USA cancer as a whole is the second leading cause of death and a major burden to health care; thus medical progress against cancer is a major public health goal. There are many individual studies to suggest that cancer treatment breakthroughs and early diagnosis have significantly improved the prognosis of cancer patients. To understand better the relationship between medical improvements and the survival experience for the patient population at large, it is useful to evaluate cancer survival trends on the population level, e.g. to find out when and how much the cancer survival rates changed. We analyse population-based grouped cancer survival data by incorporating join points into the survival models. A join point survival model facilitates the identification of trends with significant change-points in cancer survival, when related to cancer treatments or interventions. The Bayesian information criterion is used to select the number of join points. The performance of the join point survival models is evaluated with respect to cancer prognosis, join point locations, annual percentage changes in death rates by year of diagnosis and sample sizes through intensive simulation studies. The model is then applied to grouped relative survival data for several major cancer sites from the 'Surveillance, epidemiology and end results' programme of the National Cancer Institute. The change-points in the survival trends for several major cancer sites are identified and the potential driving forces behind such change-points are discussed.  相似文献   

3.
Extensions to Cox's proportional hazards regression model (Cox, 1972) for the analysis of survival data are considered for a more general multistate framework. This framework allows several transient disease states between initial entry state and death as well as incorporating possible competing causes of death. Methods for parameter and function estimation within this extension are presented and applied to the analysis of data from the Stanford Heart Transplantation Program (Crowley and Hu,1977).  相似文献   

4.
Summary.  In survival data that are collected from phase III clinical trials on breast cancer, a patient may experience more than one event, including recurrence of the original cancer, new primary cancer and death. Radiation oncologists are often interested in comparing patterns of local or regional recurrences alone as first events to identify a subgroup of patients who need to be treated by radiation therapy after surgery. The cumulative incidence function provides estimates of the cumulative probability of locoregional recurrences in the presence of other competing events. A simple version of the Gompertz distribution is proposed to parameterize the cumulative incidence function directly. The model interpretation for the cumulative incidence function is more natural than it is with the usual cause-specific hazard parameterization. Maximum likelihood analysis is used to estimate simultaneously parametric models for cumulative incidence functions of all causes. The parametric cumulative incidence approach is applied to a data set from the National Surgical Adjuvant Breast and Bowel Project and compared with analyses that are based on parametric cause-specific hazard models and nonparametric cumulative incidence estimation.  相似文献   

5.
Recurrent events in clinical trials have typically been analysed using either a multiple time-to-event method or a direct approach based on the distribution of the number of events. An area of application for these methods is exacerbation data from respiratory clinical trials. The different approaches to the analysis and the issues involved are illustrated for a large trial (n = 1465) in chronic obstructive pulmonary disease (COPD). For exacerbation rates, clinical interest centres on a direct comparison of rates for each treatment which favours the distribution-based analysis, rather than a time-to-event approach. Poisson regression has often been employed and has recently been recommended as the appropriate method of analysis for COPD exacerbations but the key assumptions often appear unreasonable for this analysis. By contrast use of a negative binomial model which corresponds to assuming a separate Poisson parameter for each subject offers a more appealing approach. Non-parametric methods avoid some of the assumptions required by these models, but do not provide appropriate estimates of treatment effects because of the discrete and bounded nature of the data.  相似文献   

6.
Median survival times and their associated confidence intervals are often used to summarize the survival outcome of a group of patients in clinical trials with failure-time endpoints. Although there is an extensive literature on this topic for the case in which the patients come from a homogeneous population, few papers have dealt with the case in which covariates are present as in the proportional hazards model. In this paper we propose a new approach to this problem and demonstrate its advantages over existing methods, not only for the proportional hazards model but also for the widely studied cases where covariates are absent and where there is no censoring. As an illustration, we apply it to the Stanford Heart Transplant data. Asymptotic theory and simulation studies show that the proposed method indeed yields confidence intervals and bands with accurate coverage errors.  相似文献   

7.
The tumor burden (TB) process is postulated to be the primary mechanism through which most anticancer treatments provide benefit. In phase II oncology trials, the biologic effects of a therapeutic agent are often analyzed using conventional endpoints for best response, such as objective response rate and progression‐free survival, both of which causes loss of information. On the other hand, graphical methods including spider plot and waterfall plot lack any statistical inference when there is more than one treatment arm. Therefore, longitudinal analysis of TB data is well recognized as a better approach for treatment evaluation. However, longitudinal TB process suffers from informative missingness because of progression or death. We propose to analyze the treatment effect on tumor growth kinetics using a joint modeling framework accounting for the informative missing mechanism. Our approach is illustrated by multisetting simulation studies and an application to a nonsmall‐cell lung cancer data set. The proposed analyses can be performed in early‐phase clinical trials to better characterize treatment effect and thereby inform decision‐making. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model. The authors would like to thank the editor and referees for their helpful comments. This work was supported by CNPq, Brazil.  相似文献   

9.
Survival curves may be adjusted for covariates using Aalen's additive risk model. Survival curves may be compared by taking the ratio of two adjusted survival curves; the ratio is denoted the generalized relative survival rate. Adjusting both survival curves for all but one of a common set of covariates gives the partial relative survival rate, which measures the covariate-specific contribution to the generalized relative survival rate. The generalized and partial relative survival rates have interpretations similar to the traditional relative survival rates frequently used in cancer epidemiology. In fact, the traditional relative survival rate can be generalized to a regression context using the additive risk model. This population-adjusted relative survival rate is an alternative and useful method for removing confounding effects of age, cohorts, and sex. The authors use a data set of malignant melanoma patients diagnosed from 1965 to 1974 in Norway. The 25-year survival of 1967 individuals is studied.  相似文献   

10.
A stochastic model wiuh exponential components is used to describe our data collected from a phase III cancer clinical trial. Criteria which guarantee that disease-free survival (DFS) can be used as a surrogate for overall survival are explored under this model. We examine several colorectal adjuvant clinical trials and find that these conditions are not satisfied. The relationship between the hazard ratio of DFS for an active treatment versus a control treatment and the cumulative hazard ratio of survival for the same two treatments is then explored. An almost linear relationship is found such that a hazard ratio for DFS of less than a threshold R corresponds to a non-null treatment effect on survival The threshold value R is determined for our colorectal adjuvant trial data. Based on this relationship, a one-sided test of equal hazard rate of survival is equivalent to a test of hazard ratio of DFS small than R This approach assumes that recurrence information is unbiasedly and accurately assessed; an assumpion which is sometimes difficult to ensure for multicenter clinical trials, particularly for interim analyses.  相似文献   

11.
In confirmatory clinical trials, the prespecification of the primary analysis model is a universally accepted scientific principle to allow strict control of the type I error. Consequently, both the ICH E9 guideline and the European Medicines Agency (EMA) guideline on missing data in confirmatory clinical trials require that the primary analysis model is defined unambiguously. This requirement applies to mixed models for longitudinal data handling missing data implicitly. To evaluate the compliance with the EMA guideline, we evaluated the model specifications in those clinical study protocols from development phases II and III submitted between 2015 and 2018 to the Ethics Committee at Hannover Medical School under the German Medicinal Products Act, which planned to use a mixed model for longitudinal data in the confirmatory testing strategy. Overall, 39 trials from different types of sponsors and a wide range of therapeutic areas were evaluated. While nearly all protocols specify the fixed and random effects of the analysis model (95%), only 77% give the structure of the covariance matrix used for modeling the repeated measurements. Moreover, the testing method (36%), the estimation method (28%), the computation method (3%), and the fallback strategy (18%) are given by less than half the study protocols. Subgroup analyses indicate that these findings are universal and not specific to clinical trial phases or size of company. Altogether, our results show that guideline compliance is to various degrees poor and consequently, strict type I error rate control at the intended level is not guaranteed.  相似文献   

12.
Several survival regression models have been developed to assess the effects of covariates on failure times. In various settings, including surveys, clinical trials and epidemiological studies, missing data may often occur due to incomplete covariate data. Most existing methods for lifetime data are based on the assumption of missing at random (MAR) covariates. However, in many substantive applications, it is important to assess the sensitivity of key model inferences to the MAR assumption. The index of sensitivity to non-ignorability (ISNI) is a local sensitivity tool to measure the potential sensitivity of key model parameters to small departures from the ignorability assumption, needless of estimating a complicated non-ignorable model. We extend this sensitivity index to evaluate the impact of a covariate that is potentially missing, not at random in survival analysis, using parametric survival models. The approach will be applied to investigate the impact of missing tumor grade on post-surgical mortality outcomes in individuals with pancreas-head cancer in the Surveillance, Epidemiology, and End Results data set. For patients suffering from cancer, tumor grade is an important risk factor. Many individuals in these data with pancreas-head cancer have missing tumor grade information. Our ISNI analysis shows that the magnitude of effect for most covariates (with significant effect on the survival time distribution), specifically surgery and tumor grade as some important risk factors in cancer studies, highly depends on the missing mechanism assumption of the tumor grade. Also a simulation study is conducted to evaluate the performance of the proposed index in detecting sensitivity of key model parameters.  相似文献   

13.
Two statistical issues that have arisen in the course of a study of mortality and disease related to the human immunodeficiency virus (HIV) in the haemophilia population of the UK are discussed. The first of these concerns methods of standardization for age and it is shown that, when the mortality of HIV-infected individuals with different severities of haemophilia are compared, an analysis based on the ratio of observed to national expected deaths suggests that mortality in HIV-infected individuals depends on the severity of their haemophilia. This conclusion is inappropriate and mortality in HIV-infected individuals is, in fact, similar regardless of severity of haemophilia. The second part of the paper discusses the effect of using various end points for studies of survival and progression of HIV-related disease. In the present example it was possible to calculate relative survival in HIV-infected individuals, i.e. survival after correcting for mortality expected in the absence of HIV infection. An analysis based on absolute survival gave a very similar picture of the effect of age at infection to an analysis based on relative survival, whereas an analysis based on the time to diagnosis of acquired immune deficiency syndrome (AIDS) underestimated the effect substantially and the possible alternative end point of time to AIDS or HIV-related death was shown to be subject to considerable misclassification error.  相似文献   

14.
Abstract

In general, survival data are time-to-event data, such as time to death, time to appearance of a tumor, or time to recurrence of a disease. Models for survival data have frequently been based on the proportional hazards model, proposed by Cox. The Cox model has intensive application in the field of social, medical, behavioral and public health sciences. In this paper we propose a more efficient sampling method of recruiting subjects for survival analysis. We propose using a Moving Extreme Ranked Set Sampling (MERSS) scheme with ranking based on an easy-to-evaluate baseline auxiliary variable known to be associated with survival time. This paper demonstrates that this approach provides a more powerful testing procedure as well as a more efficient estimate of hazard ratio than that based on simple random sampling (SRS). Theoretical derivation and simulation studies are provided. The Iowa 65+ Rural study data are used to illustrate the methods developed in this paper.  相似文献   

15.
Many commonly used statistical methods for data analysis or clinical trial design rely on incorrect assumptions or assume an over‐simplified framework that ignores important information. Such statistical practices may lead to incorrect conclusions about treatment effects or clinical trial designs that are impractical or that do not accurately reflect the investigator's goals. Bayesian nonparametric (BNP) models and methods are a very flexible new class of statistical tools that can overcome such limitations. This is because BNP models can accurately approximate any distribution or function and can accommodate a broad range of statistical problems, including density estimation, regression, survival analysis, graphical modeling, neural networks, classification, clustering, population models, forecasting and prediction, spatiotemporal models, and causal inference. This paper describes 3 illustrative applications of BNP methods, including a randomized clinical trial to compare treatments for intraoperative air leaks after pulmonary resection, estimating survival time with different multi‐stage chemotherapy regimes for acute leukemia, and evaluating joint effects of targeted treatment and an intermediate biological outcome on progression‐free survival time in prostate cancer.  相似文献   

16.
Current survival techniques do not provide a good method for handling clinical trials with a large percent of censored observations. This research proposes using time-dependent surrogates of survival as outcome variables, in conjunction with observed survival time, to improve the precision in comparing the relative effects of two treatments on the distribution of survival time. This is in contrast to the standard method used today which uses the marginal density of survival time, T. only, or the marginal density of a surrogate, X, only, therefore, ignoring some available information. The surrogate measure, X, may be a fixed value or a time-dependent variable, X(t). X is a summary measure of some of the covariates measured throughout the trial that provide additional information on a subject's survival time. It is possible to model these time-dependent covariate values and relate the parameters in the model to the parameters in the distribution of T given X. The result is that three new models are available for the analysis of clinical trials. All three models use the joint density of survival time and a surrogate measure. Given one of three different assumed mechanisms of the potential treatment effect, each of the three methods improves the precision of the treatment estimate.  相似文献   

17.
In this note, we highlight the fact that the choice of type I and type II error rates should not simply be set at traditional levels in the phase II clinical trial setting when considering the relative success rate of previous trials in a given disease setting. For diseases in which it is rare that a new compound is active, we argue that more stringent type I error rates in the phase II setting may be more important relative to relaxing the type II error rates. The paper itself is more of a 'thought' experiment on this topic such that specific clinical trial settings will require specific applications of this approach. This is due in part to the fact that the real-world setting is more complex relative to overall decision process in terms of moving from phase II to phase III trials than our basic illustrative model.  相似文献   

18.
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway–Maxwell–Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.  相似文献   

19.
Summary.  Non-ignorable missing data, a serious problem in both clinical trials and observational studies, can lead to biased inferences. Quality-of-life measures have become increasingly popular in clinical trials. However, these measures are often incompletely observed, and investigators may suspect that missing quality-of-life data are likely to be non-ignorable. Although several recent references have addressed missing covariates in survival analysis, they all required the assumption that missingness is at random or that all covariates are discrete. We present a method for estimating the parameters in the Cox proportional hazards model when missing covariates may be non-ignorable and continuous or discrete. Our method is useful in reducing the bias and improving efficiency in the presence of missing data. The methodology clearly specifies assumptions about the missing data mechanism and, through sensitivity analysis, helps investigators to understand the potential effect of missing data on study results.  相似文献   

20.
In some clinical trials and epidemiologic studies, investigators are interested in knowing whether the variability of a biomarker is independently predictive of clinical outcomes. This question is often addressed via a naïve approach where a sample-based estimate (e.g., standard deviation) is calculated as a surrogate for the “true” variability and then used in regression models as a covariate assumed to be free of measurement error. However, it is well known that the measurement error in covariates causes underestimation of the true association. The issue of underestimation can be substantial when the precision is low because of limited number of measures per subject. The joint analysis of survival data and longitudinal data enables one to account for the measurement error in longitudinal data and has received substantial attention in recent years. In this paper we propose a joint model to assess the predictive effect of biomarker variability. The joint model consists of two linked sub-models, a linear mixed model with patient-specific variance for longitudinal data and a full parametric Weibull distribution for survival data, and the association between two models is induced by a latent Gaussian process. Parameters in the joint model are estimated under Bayesian framework and implemented using Markov chain Monte Carlo (MCMC) methods with WinBUGS software. The method is illustrated in the Ocular Hypertension Treatment Study to assess whether the variability of intraocular pressure is an independent risk of primary open-angle glaucoma. The performance of the method is also assessed by simulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号