首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Make‐to‐order (MTO) manufacturers must ensure concurrent availability of all parts required for production, as any unavailability may cause a delay in completion time. A major challenge for MTO manufacturers operating under high demand variability is to produce customized parts in time to meet internal production schedules. We present a case study of a producer of MTO offshore oil rigs that highlights the key aspects of the problem. The producer was faced with an increase in both demand and demand variability. Consequently, it had to rely heavily on subcontracting to handle production requirements that were in excess of its capacity. We focused on the manufacture of customized steel panels, which represent the main sub‐assemblies for building an oil rig. We considered two key tactical parameters: the planning window of the master production schedule and the planned lead time of each workstation. Under the constraint of a fixed internal delivery lead time, we determined the optimal planning parameters. This improvement effort reduced the subcontracting cost by implementing several actions: the creation of a master schedule for each sub‐assembly family of the steel panels, the smoothing of the master schedule over its planning window, and the controlling of production at each workstation by its planned lead time. We report our experience in applying the analytical model, the managerial insights gained, and how the application benefits the oil‐rig producer.  相似文献   

2.
Process technology capabilities are becoming increasingly important as flexible manufacturing continues to be more prevalent, and as competition compels companies to provide expanded variety, at ever lower cost, so introducing plant and processes technological constraints. Model flexibility can also benefit from an appropriate production planning process, especially concerning mixed-model assembly lines, since it can facilitate master scheduling and line balancing activities, which are essential aspects of flexibility. Robust and practical planning approaches have to take into account two different aspects: the first consists in ensuring that the elaborated aggregate plan can be disaggregated into at least one detailed feasible plan for the realised demand, whereas the second in ensuring that this detailed plan is feasible at the operational level. This article faces the model flexibility challenge, reviewing and discussing the planning problem of a real world assembly manufacturing system, producing high volume and a variety of agricultural tractors and machines, analysing and resolving some important issues related to technological, organisational and managerial constraints. This article illustrates the implementation of an Advanced Planning System integrated with a mixed integer-programming model, which is solved by a new iterative heuristic approach capable of achieving interesting planning improvements for model-flexibility management.  相似文献   

3.
The use of commonality is widely diffused as a criterion to reduce uncertainty in demand forecasts for the master production schedule (MPS). Nevertheless, studies have mostly focused on exploiting component commonality in make to stock and assemble to order manufacturing. This paper refers to planning environments with two specific characteristics. First, the degree of certainty of the demand is extremely low, due to product complexity, with poor modularization and standardization, and to the presence of few customers of large dimensions. Second, the delivery lead time is less than the total lead time. In this situation, demand for MPS planning units is extremely uncertain and sporadic. It is therefore necessary to formulate in advance forecasts of customer orders with a redundant configuration. In this paper a technique for the reduction of demand uncertainty is introduced, based on the exploitation of order commonalities. In particular, relations between order commonality and uncertainty reduction in a planning environment with such complex features are illustrated. Then, guidelines for the implementation of the technique in order to reduce over-planning in the master production schedule are provided. Finally, the performances of the technique are empirically analysed by means of both a simulation model and experimental application in a telecommunication systems manufacturer  相似文献   

4.
This paper extends the studies by Sridharan, Berry, and Udayabhanu from single-level MPS systems to multilevel material requirements planning (MRP) systems, and examines the impact of product structure, lot-sizing rules and cost parameters upon the selection of MPS freezing parameters under deterministic demand. A model is built to simulate the master production scheduling and material requirements planning operations in a make-to-order environment. The results show that all the MPS freezing parameters studied have a significant impact upon total inventory costs and schedule instability in multilevel MRP systems. First, the order-based freezing method is preferable to the period-based method. Secondly, the study finds that increasing the freezing proportion reduces both total inventory costs and schedule instability. This finding contradicts the finding by Sridharan et al. in single-level systems. Thirdly, the study finds that a higher replanning periodicity results in both lower total inventory cost and lower schedule instability. The study also indicates that the product structure and lot-sizing rules do not significantly influence the selection of MPS freezing parameters in a practical sense under most situations. However, the cost parameter seems to significantly influence the selection of replanning periodicity.  相似文献   

5.
Updating production plans typically is achieved by rolling the planning horizon forward one period at a time, each time including the latest information in order to determine the best course of action to pursue in the present period. Theoretical planning-horizon studies have identified the conditions by which the production decisions in the current and some specified number of future periods remain optimal given some set of future demands. Motivated by these findings, this study addresses the replanning frequency in a hierarchical production planning problem where no planning-horizon theorems are available. In this problem the aggregate production plan and the master production schedule are linked by a rolling-horizon practice. Empirical experimentation indicates that under certain cost and demand conditions the master production schedule need not be updated every period. If a schedule does not need to be updated for several periods, the schedule for these periods can be frozen to provide stability for planning components at lower levels in the bill of material of the products. The results of this study thus provide some reference for the determination of the frozen portion of the master production schedule.  相似文献   

6.
A growing number of companies install wind and solar generators in their energy‐intensive facilities to attain low‐carbon manufacturing operations. However, there is a lack of methodological studies on operating large manufacturing facilities with intermittent power. This study presents a multi‐period, production‐inventory planning model in a multi‐plant manufacturing system powered with onsite and grid renewable energy. Our goal is to determine the production quantity, the stock level, and the renewable energy supply in each period such that the aggregate production cost (including energy) is minimized. We tackle this complex decision problem in three steps. First, we present a deterministic planning model to attain the desired green energy penetration level. Next, the deterministic model is extended to a multistage stochastic optimization model taking into account the uncertainties of renewables. Finally, we develop an efficient modified Benders decomposition algorithm to search for the optimal production schedule using a scenario tree. Numerical experiments are carried out to verify and validate the model integrity, and the potential of realizing high‐level renewables penetration in large manufacturing system is discussed and justified.  相似文献   

7.
Semiconductor manufacturing is confronted with a large number of products whose mix is changing over time, heterogeneous fabrication processes, re-entrant flows of material, and different sources of environmental and system uncertainty. In this context, the mid-term production planning approach, i.e., master planning, typically does not capture the entire complexity of the shop-floor. It deals with an aggregated representation of the production system. There is a need for evaluating the planning algorithm in use while taking the execution level into account. Therefore, we introduce in this paper a simulation-based framework that allows for modeling the behavior of the market demand and the production system. An appropriate performance assessment methodology is proposed. The performance of two heuristic approaches for master planning in semiconductor manufacturing, a genetic algorithm and a rule-based assignment procedure, is evaluated within a rolling horizon setting while considering demand and execution uncertainty. A reduced discrete-event simulation model is used to mimic a one-stage network of wafer fabrication facilities. The results of simulation experiments are discussed.  相似文献   

8.
The aggregate production planning (APP) problem considers the medium-term production loading plans subject to certain restrictions such as production capacity and workforce level. It is not uncommon for management to often encounter uncertainty and noisy data, in which the variables or parameters are stochastic. In this paper, a robust optimization model is developed to solve the aggregate production planning problems in an environment of uncertainty in which the production cost, labour cost, inventory cost, and hiring and layoff cost are minimized. By adjusting penalty parameters, decision-makers can determine an optimal medium-term production strategy including production loading plan and workforce level while considering different economic growth scenarios. Numerical results demonstrate the robustness and effectiveness of the proposed model. The proposed model is realistic for dealing with uncertain economic conditions. The analysis of the tradeoff between solution robustness and model robustness is also presented.  相似文献   

9.

Master production schedules are usually updated by the use of a rolling schedule. Previous studies on rolling schedules seem to form the consensus that frequent replanning of a master production schedule (MPS) can increase costs and schedule instability. Building on previous research on rolling schedules, this study addresses the impact of overestimation or underestimation of demand on the rolling horizon MPS cost performance for various replanning frequencies. The MPS model developed in this paper is based on actual data collected from a paint company. Results indicate that under both the forecast errors conditions investigated in this study, a two-replanning interval provided the best MPS cost performance for this company environment. However, results from the sensitivity analysis performed on the MPS model indicate that when the setup and inventory carrying costs are high, a 1-month replanning frequency (frequent replanning) seems more appropriate for both of the above forecast error scenarios.  相似文献   

10.
Within the sequential framework of material requirements planning (MRP), a master production schedule (MPS) of end-item production is prepared and a bill-of-material processor is used to convert the MPS into a plan for needed subassemblies, parts, and materials. This study examines the impact of different procedures for considering inventory-related costs and capacity limitations in the two phases of planning: master production scheduling and bill-of-material (BOM) processing. A total of nine procedures are considered for integrating the two phases of planning. The results indicate that the integrated procedures have a significant effect on the trade-offs among inventory-related costs, work load variations, over/under time costs, and excess work loads. Further, the results suggest that the method used to develop the MPS has the primary influence on these trade-offs, but the method used by the BOM processor can sometimes have a moderating effect.  相似文献   

11.
This paper presents a case study on the use of multi-agents for integrated dynamic scheduling of steel milling and casting. Steel production is an extremely complex problem requiring the consideration of several different constraints and objectives of a range of processes in a dynamic environment. Most research in steel production scheduling considers static scheduling of processes in isolation. In contrast to earlier approaches, the multi-agent architecture proposed consists of a set of heterogeneous agents which integrate and optimize a range of scheduling objectives related to different processes of steel production, and can adapt to changes in the environment while still achieving overall system goals. Each agent embodies its own scheduling model and realizes its local predictive-reactive schedule taking into account local objectives, real-time information and information received from other agents. Agents cooperate in order to find a globally good schedule, which is able to effectively react to real-time disruptions, and to optimize the original production goals whilst minimising disruption carried by unexpected events occurring in real-time. The inter-agent cooperation is based on the Contract Net Protocol with commitment.  相似文献   

12.
This paper describes the application of a model to design and manage the manufacturing process through an integrated system, using a Hierarchical methodology-by means of different aggregation and disaggregation stages with an appropriate time horizon. The hierarchical model obtained allows interfacing between the master schedule and the schedule of the orders. At each level of the hierarchical model some decisions have to be made in order to design the manufacturing system, but having a model that also takes into consideration the management of the system. To do this it is necessary to use aggregated information concerned with the level at which decisions are made. It is obtained from the database, which contains the information at the highest level of aggregation. This model has been applied to a metal mechanic company, that makes final products such as car washers, etc. The benefits of this approach for the company are addressed in this paper.  相似文献   

13.
杜少甫  梁樑 《管理学报》2006,3(2):143-147
提出了基于通用物料单构建供应链网络的方法,并以此为基础建立了其有生产能力约束的集成生产计划模型。由于任一成员都有生产能力上限,且生产能力可相互转化,故总生产能力须进行标准化。模型的目标是供应链联盟整体收益最大化,模型解反映了优化的集成生产计划和生产合作关系。  相似文献   

14.

This paper evaluates alternative methods of establishing the safety stock level taking into consideration of historical measures of forecasting accuracy and the needs for master production scheduling and material requirement planning under a rolling time horizon. A computer model is used to simulate the forecasting, master production scheduling and material planning activities in a company that produces to stock and the production activities are managed by multilevel MRP systems. The simulation output is analysed to evaluate the impact of safety stock methods on MRP system performance. The result of the study shows that using safety stock can help to reduce total cost, schedule instability and improve service level in the MRP systems. Guidelines are developed to help managers select methods to determine safety stock in MRP system operations.  相似文献   

15.
Basic characteristics of an assemble-to-order environment make effective master scheduling extremely difficult. Limited resource capacities and dynamic customer end-item demand contribute to the complexity of the master production scheduling problem. To gain flexibility and responsiveness within this system, the master production schedule (MPS) focuses at the component level. This research proposes a master scheduling technique for manufactured components which combines a multiobjective capacitated multi-item/multi-stage lot-sizing model with an interactive multiple objective optimization solution procedure. To evaluate the model's performance as a realistic and practical master scheduling tool, this study focuses on the National Cash Register (NCR) electronics manufacturing facility in Columbia, South Carolina.  相似文献   

16.
We introduce an experimental push/ pull production planning and control software system which is designed as an alternative to a MRP-II system for mass manufacturing enterprises in China. It has the following distinguishing features: (1) putting the philosophy of JIT into the master production scheduling of MRP-II via the earliness/ tardiness production planning method; (2) controlling material input by push and processing/ assembly by pull; and (3) adjusting the parameters of the production line by the‘ suggestion for improvement of production line’ module. Simulation results have shown that the proposed system can achieve better planning and control performance than existing systems.  相似文献   

17.
Final assembly plants send material schedules to first-tier suppliers who in turn send schedules to second-tier suppliers and so on through the multiple tiers of the supply chain. A key cost driver for the supply chain is a schedule characteristic termed stability. The Total Quality Management approach is applied to improve schedule stability in the supply chain of a large vertically integrated automotive manufacturer. A measurement described, actual stability results are provided, the causes of instability are listed, and some corrective actions are specified. Results indicate that schedule stability can be improved without damaging the performance of other measures such as inventory and customer responsiveness. and analysis process is  相似文献   

18.
Organisations willing to succeed in global competition have to integrate their internal and external processes. This especially includes planning and production control (PPC) processes. Optimised allocation of the production resources and quick response to demand changes result in lower cost and improvement of production performance. Practitioners and researchers have been trying to achieve these goals using production planning techniques. Although the results are significant, it seems necessary to integrate production operations in order to improve the production performance. The goals, information and decisions taken in production planning and control and process planning are often very different and difficult to integrate in Cellular Manufacturing (CM) environments. Designing an efficient PPC system and integrating it with process planning in a cellular environment is of the same importance. The following paper proposes first a comprehensive framework of integrated process planning and production planning and control in CM. Then, with respect to this framework and utilising the domain knowledge in the area of CM systems, an integrated model based on Integrated Definition Modeling Language is developed. The application of the models has been considered as a case study for a production system in electronics and telecommunication sector in a plant in Iran. The validity and completeness of the proposed model is tested by a panel of experts in the areas of production planning and control in CM environments.  相似文献   

19.
In uncertain environments, the master production schedule (MPS) is usually developed using a rolling schedule. When utilizing a rolling schedule, the MPS is replanned periodically and a portion of the MPS is frozen in each planning cycle. The cost performance of a rolling schedule depends on three decisions: the choice of the replanning interval (R), which determines how often the MPS should be replanned; the choice of the frozen interval (F), which determines how many periods the MPS should be frozen in each planning cycle; and the choice of the forecast window (T), which is the time interval over which the MPS is determined using newly updated forecast data. This paper uses an analytical approach to study the master production scheduling process in uncertain environments without capacity constraints, where the MPS is developed using a rolling schedule. It focuses on the choices of F, R, and T for the MPS. A conceptual framework that includes all important MPS time intervals is described. The effects of F, R, and T on system costs, which include the forecast error, MPS change, setup, and inventory holding costs, are also explored. Finally, a mathematical model for the MPS is presented. This model approximates the average system cost as a function of F, R, T, and several environmental factors. It can be used to estimate the associated system costs for any combination of F, R, and T.  相似文献   

20.
Recent advances in approaches and production technologies for the production of goods and services have made just‐in‐time (JIT) a strong alternative for use in intermittent and small batch production systems, especially when time‐based competition is the norm and a low inventory is a must. However, the conventional JIT system is designed for mass production with a stable master production schedule. This paper suggests supplementing the information provided by production kanbans with information about customer waiting lines to be used by operators to schedule production in each work‐station of intermittent and small batch production systems. This paper uses simulation to analyze the effect of four scheduling policy variables—number of kanbans, length of the withdrawal cycle, information about customer waiting lines, and priority rules on two performance measures—customer wait‐time and inventory. The results show that using information about customer waiting lines reduces customer wait‐time by about 30% while also reducing inventory by about 2%. In addition, the effect of information about customer waiting lines overshadows the effect of priority rules on customer wait‐time and inventory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号