首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

2.
On Block Updating in Markov Random Field Models for Disease Mapping   总被引:3,自引:0,他引:3  
Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single-site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non-standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields ( Rue, 2001 ). By comparison, Monte Carlo estimates based on single-site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.  相似文献   

3.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

4.
We consider conditional exact tests of factor effects in design of experiments for discrete response variables. Similarly to the analysis of contingency tables, Markov chain Monte Carlo methods can be used to perform exact tests, especially when large-sample approximations of the null distributions are poor and the enumeration of the conditional sample space is infeasible. In order to construct a connected Markov chain over the appropriate sample space, one approach is to compute a Markov basis. Theoretically, a Markov basis can be characterized as a generator of a well-specified toric ideal in a polynomial ring and is computed by computational algebraic software. However, the computation of a Markov basis sometimes becomes infeasible, even for problems of moderate sizes. In the present article, we obtain the closed-form expression of minimal Markov bases for the main effect models of 2p ? 1 fractional factorial designs of resolution p.  相似文献   

5.
Summary.  The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.  相似文献   

6.
Summary.  Functional magnetic resonance imaging has become a standard technology in human brain mapping. Analyses of the massive spatiotemporal functional magnetic resonance imaging data sets often focus on parametric or non-parametric modelling of the temporal component, whereas spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high curvature transitions between activated and non-activated regions of the brain. To improve spatial adaptivity, we introduce a class of inhomogeneous Markov random fields with stochastic interaction weights in a space-varying coefficient model. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, can be carried out through efficient Markov chain Monte Carlo simulation. Although motivated by the analysis of functional magnetic resonance imaging data, the methodological development is general and can also be used for spatial smoothing and regression analysis of areal data on irregular lattices. An application to stylized artificial data and to real functional magnetic resonance imaging data from a visual stimulation experiment demonstrates the performance of our approach in comparison with Gaussian and robustified non-Gaussian Markov random-field models.  相似文献   

7.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

8.
This paper demonstrates how Gaussian Markov random fields (conditional autoregressions) can be sampled quickly by using numerical techniques for sparse matrices. The algorithm is general and efficient, and expands easily to various forms for conditional simulation and evaluation of normalization constants. We demonstrate its use by constructing efficient block updates in Markov chain Monte Carlo algorithms for disease mapping.  相似文献   

9.
We develop in this paper three multiple-try blocking schemes for Bayesian analysis of nonlinear and non-Gaussian state space models. To reduce the correlations between successive iterates and to avoid getting trapped in a local maximum, we construct Markov chains by drawing state variables in blocks with multiple trial points. The first and second methods adopt autoregressive and independent kernels to produce the trial points, while the third method uses samples along suitable directions. Using the time series structure of the state space models, the three sampling schemes can be implemented efficiently. In our multimodal examples, the three multiple-try samplers are able to generate the desired posterior sample, whereas existing methods fail to do so.  相似文献   

10.
Discrete Markov random fields form a natural class of models to represent images and spatial datasets. The use of such models is, however, hampered by a computationally intractable normalising constant. This makes parameter estimation and a fully Bayesian treatment of discrete Markov random fields difficult. We apply approximation theory for pseudo-Boolean functions to binary Markov random fields and construct approximations and upper and lower bounds for the associated computationally intractable normalising constant. As a by-product of this process we also get a partially ordered Markov model approximation of the binary Markov random field. We present numerical examples with both the pairwise interaction Ising model and with higher-order interaction models, showing the quality of our approximations and bounds. We also present simulation examples and one real data example demonstrating how the approximations and bounds can be applied for parameter estimation and to handle a fully Bayesian model computationally.  相似文献   

11.
We introduce a class of spatial random effects models that have Markov random fields (MRF) as latent processes. Calculating the maximum likelihood estimates of unknown parameters in SREs is extremely difficult, because the normalizing factors of MRFs and additional integrations from unobserved random effects are computationally prohibitive. We propose a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood functions of spatial random effects models. The SAEM algorithm integrates recent improvements in stochastic approximation algorithms; it also includes components of the Newton-Raphson algorithm and the expectation-maximization (EM) gradient algorithm. The convergence of the SAEM algorithm is guaranteed under some mild conditions. We apply the SAEM algorithm to three examples that are representative of real-world applications: a state space model, a noisy Ising model, and segmenting magnetic resonance images (MRI) of the human brain. The SAEM algorithm gives satisfactory results in finding the maximum likelihood estimate of spatial random effects models in each of these instances.  相似文献   

12.
Summary. Motivated by the autologistic model for the analysis of spatial binary data on the two-dimensional lattice, we develop efficient computational methods for calculating the normalizing constant for models for discrete data defined on the cylinder and lattice. Because the normalizing constant is generally unknown analytically, statisticians have developed various ad hoc methods to overcome this difficulty. Our aim is to provide computationally and statistically efficient methods for calculating the normalizing constant so that efficient likelihood-based statistical methods are then available for inference. We extend the so-called transition method to find a feasible computational method of obtaining the normalizing constant for the cylinder boundary condition. To extend the result to the free-boundary condition on the lattice we use an efficient path sampling Markov chain Monte Carlo scheme. The methods are generally applicable to association patterns other than spatial, such as clustered binary data, and to variables taking three or more values described by, for example, Potts models.  相似文献   

13.
Markov chain Monte Carlo (MCMC) is an important computational technique for generating samples from non-standard probability distributions. A major challenge in the design of practical MCMC samplers is to achieve efficient convergence and mixing properties. One way to accelerate convergence and mixing is to adapt the proposal distribution in light of previously sampled points, thus increasing the probability of acceptance. In this paper, we propose two new adaptive MCMC algorithms based on the Independent Metropolis–Hastings algorithm. In the first, we adjust the proposal to minimize an estimate of the cross-entropy between the target and proposal distributions, using the experience of pre-runs. This approach provides a general technique for deriving natural adaptive formulae. The second approach uses multiple parallel chains, and involves updating chains individually, then updating a proposal density by fitting a Bayesian model to the population. An important feature of this approach is that adapting the proposal does not change the limiting distributions of the chains. Consequently, the adaptive phase of the sampler can be continued indefinitely. We include results of numerical experiments indicating that the new algorithms compete well with traditional Metropolis–Hastings algorithms. We also demonstrate the method for a realistic problem arising in Comparative Genomics.  相似文献   

14.
Gu MG  Sun L  Zuo G 《Lifetime data analysis》2005,11(4):473-488
An important property of Cox regression model is that the estimation of regression parameters using the partial likelihood procedure does not depend on its baseline survival function. We call such a procedure baseline-free. Using marginal likelihood, we show that an baseline-free procedure can be derived for a class of general transformation models under interval censoring framework. The baseline-free procedure results a simplified and stable computation algorithm for some complicated and important semiparametric models, such as frailty models and heteroscedastic hazard/rank regression models, where the estimation procedures so far available involve estimation of the infinite dimensional baseline function. A detailed computational algorithm using Markov Chain Monte Carlo stochastic approximation is presented. The proposed procedure is demonstrated through extensive simulation studies, showing the validity of asymptotic consistency and normality. We also illustrate the procedure with a real data set from a study of breast cancer. A heuristic argument showing that the score function is a mean zero martingale is provided.  相似文献   

15.
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelization and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the suggested estimators, and provide central limit theorems with expressions for asymptotic variances. We demonstrate how our method can make use of SMC in the state space models context, using Laplace approximations and time-discretized diffusions. Our experimental results are promising and show that the IS-type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelization.  相似文献   

16.
We consider the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We study a class of approximate Markov chain Monte Carlo (MCMC) sampling schemes that deal with this issue. We also develop a new Metropolis–Hastings kernel to sample sparse large networks from ERG models. We illustrate the proposed methods on several examples.  相似文献   

17.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

18.
ABSTRACT

This note discusses the approach of specifying a Gaussian Markov random field (GMRF) by the Cholesky triangle of the precision matrix. A such representation can be made extremely sparse using numerical techniques for incomplete sparse Cholesky factorization, and provide very computational efficient representation for simulating from the GMRF. However, we provide theoretical and empirical justification showing that the sparse Cholesky triangle representation is fragile when conditioning a GMRF on a subset of the variables or observed data, meaning that the computational cost increases.  相似文献   

19.
In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.  相似文献   

20.
This work extends the integrated nested Laplace approximation (INLA) method to latent models outside the scope of latent Gaussian models, where independent components of the latent field can have a near‐Gaussian distribution. The proposed methodology is an essential component of a bigger project that aims to extend the R package INLA in order to allow the user to add flexibility and challenge the Gaussian assumptions of some of the model components in a straightforward and intuitive way. Our approach is applied to two examples, and the results are compared with that obtained by Markov chain Monte Carlo, showing similar accuracy with only a small fraction of computational time. Implementation of the proposed extension is available in the R‐INLA package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号