首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a simulation study is conducted to systematically investigate the impact of dichotomizing longitudinal continuous outcome variables under various types of missing data mechanisms. Generalized linear models (GLM) with standard generalized estimating equations (GEE) are widely used for longitudinal outcome analysis, but these semi‐parametric approaches are only valid under missing data completely at random (MCAR). Alternatively, weighted GEE (WGEE) and multiple imputation GEE (MI‐GEE) were developed to ensure validity under missing at random (MAR). Using a simulation study, the performance of standard GEE, WGEE and MI‐GEE on incomplete longitudinal dichotomized outcome analysis is evaluated. For comparisons, likelihood‐based linear mixed effects models (LMM) are used for incomplete longitudinal original continuous outcome analysis. Focusing on dichotomized outcome analysis, MI‐GEE with original continuous missing data imputation procedure provides well controlled test sizes and more stable power estimates compared with any other GEE‐based approaches. It is also shown that dichotomizing longitudinal continuous outcome will result in substantial loss of power compared with LMM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Longitudinal or clustered response data arise in many applications such as biostatistics, epidemiology and environmental studies. The repeated responses cannot in general be assumed to be independent. One method of analysing such data is by using the generalized estimating equations (GEE) approach. The current GEE method for estimating regression effects in longitudinal data focuses on the modelling of the working correlation matrix assuming a known variance function. However, correct choice of the correlation structure may not necessarily improve estimation efficiency for the regression parameters if the variance function is misspecified [Wang YG, Lin X. Effects of variance-function misspecification in analysis of longitudinal data. Biometrics. 2005;61:413–421]. In this connection two problems arise: finding a correct variance function and estimating the parameters of the chosen variance function. In this paper, we study the problem of estimating the parameters of the variance function assuming that the form of the variance function is known and then the effect of a misspecified variance function on the estimates of the regression parameters. We propose a GEE approach to estimate the parameters of the variance function. This estimation approach borrows the idea of Davidian and Carroll [Variance function estimation. J Amer Statist Assoc. 1987;82:1079–1091] by solving a nonlinear regression problem where residuals are regarded as the responses and the variance function is regarded as the regression function. A limited simulation study shows that the proposed method performs at least as well as the modified pseudo-likelihood approach developed by Wang and Zhao [A modified pseudolikelihood approach for analysis of longitudinal data. Biometrics. 2007;63:681–689]. Both these methods perform better than the GEE approach.  相似文献   

3.
Patients infected with the human immunodeficiency virus (HIV) generally experience a decline in their CD4 cell count (a count of certain white blood cells). We describe the use of quantile regression methods to analyse longitudinal data on CD4 cell counts from 1300 patients who participated in clinical trials that compared two therapeutic treatments: zidovudine and didanosine. It is of scientific interest to determine any treatment differences in the CD4 cell counts over a short treatment period. However, the analysis of the CD4 data is complicated by drop-outs: patients with lower CD4 cell counts at the base-line appear more likely to drop out at later measurement occasions. Motivated by this example, we describe the use of `weighted' estimating equations in quantile regression models for longitudinal data with drop-outs. In particular, the conventional estimating equations for the quantile regression parameters are weighted inversely proportionally to the probability of drop-out. This approach requires the process generating the missing data to be estimable but makes no assumptions about the distribution of the responses other than those imposed by the quantile regression model. This method yields consistent estimates of the quantile regression parameters provided that the model for drop-out has been correctly specified. The methodology proposed is applied to the CD4 cell count data and the results are compared with those obtained from an `unweighted' analysis. These results demonstrate how an analysis that fails to account for drop-outs can mislead.  相似文献   

4.
Although Fan showed that the mixed-effects model for repeated measures (MMRM) is appropriate to analyze complete longitudinal binary data in terms of the rate difference, they focused on using the generalized estimating equations (GEE) to make statistical inference. The current article emphasizes validity of the MMRM when the normal-distribution-based pseudo likelihood approach is used to make inference for complete longitudinal binary data. For incomplete longitudinal binary data with missing at random missing mechanism, however, the MMRM, using either the GEE or the normal-distribution-based pseudo likelihood inferential procedure, gives biased results in general and should not be used for analysis.  相似文献   

5.
Information from multiple informants is frequently used to assess psychopathology. We consider marginal regression models with multiple informants as discrete predictors and a time to event outcome. We fit these models to data from the Stirling County Study; specifically, the models predict mortality from self report of psychiatric disorders and also predict mortality from physician report of psychiatric disorders. Previously, Horton et al. found little relationship between self and physician reports of psychopathology, but that the relationship of self report of psychopathology with mortality was similar to that of physician report of psychopathology with mortality. Generalized estimating equations (GEE) have been used to fit marginal models with multiple informant covariates; here we develop a maximum likelihood (ML) approach and show how it relates to the GEE approach. In a simple setting using a saturated model, the ML approach can be constructed to provide estimates that match those found using GEE. We extend the ML technique to consider multiple informant predictors with missingness and compare the method to using inverse probability weighted (IPW) GEE. Our simulation study illustrates that IPW GEE loses little efficiency compared with ML in the presence of monotone missingness. Our example data has non-monotone missingness; in this case, ML offers a modest decrease in variance compared with IPW GEE, particularly for estimating covariates in the marginal models. In more general settings, e.g., categorical predictors and piecewise exponential models, the likelihood parameters from the ML technique do not have the same interpretation as the GEE. Thus, the GEE is recommended to fit marginal models for its flexibility, ease of interpretation and comparable efficiency to ML in the presence of missing data.  相似文献   

6.
Patient dropout is a common problem in studies that collect repeated binary measurements. Generalized estimating equations (GEE) are often used to analyze such data. The dropout mechanism may be plausibly missing at random (MAR), i.e. unrelated to future measurements given covariates and past measurements. In this case, various authors have recommended weighted GEE with weights based on an assumed dropout model, or an imputation approach, or a doubly robust approach based on weighting and imputation. These approaches provide asymptotically unbiased inference, provided the dropout or imputation model (as appropriate) is correctly specified. Other authors have suggested that, provided the working correlation structure is correctly specified, GEE using an improved estimator of the correlation parameters (‘modified GEE’) show minimal bias. These modified GEE have not been thoroughly examined. In this paper, we study the asymptotic bias under MAR dropout of these modified GEE, the standard GEE, and also GEE using the true correlation. We demonstrate that all three methods are biased in general. The modified GEE may be preferred to the standard GEE and are subject to only minimal bias in many MAR scenarios but in others are substantially biased. Hence, we recommend the modified GEE be used with caution.  相似文献   

7.
We analyse longitudinal data on CD4 cell counts from patients who participated in clinical trials that compared two therapeutic treatments: zidovudine and didanosine. The investigators were interested in modelling the CD4 cell count as a function of treatment, age at base-line and disease stage at base-line. Serious concerns can be raised about the normality assumption of CD4 cell counts that is implicit in many methods and therefore an analysis may have to start with a transformation. Instead of assuming that we know the transformation (e.g. logarithmic) that makes the outcome normal and linearly related to the covariates, we estimate the transformation, by using maximum likelihood, within the Box–Cox family. There has been considerable work on the Box–Cox transformation for univariate regression models. Here, we discuss the Box–Cox transformation for longitudinal regression models when the outcome can be missing over time, and we also implement a maximization method for the likelihood, assumming that the missing data are missing at random.  相似文献   

8.
Summary.  The main statistical problem in many epidemiological studies which involve repeated measurements of surrogate markers is the frequent occurrence of missing data. Standard likelihood-based approaches like the linear random-effects model fail to give unbiased estimates when data are non-ignorably missing. In human immunodeficiency virus (HIV) type 1 infection, two markers which have been widely used to track progression of the disease are CD4 cell counts and HIV–ribonucleic acid (RNA) viral load levels. Repeated measurements of these markers tend to be informatively censored, which is a special case of non-ignorable missingness. In such cases, we need to apply methods that jointly model the observed data and the missingness process. Despite their high correlation, longitudinal data of these markers have been analysed independently by using mainly random-effects models. Touloumi and co-workers have proposed a model termed the joint multivariate random-effects model which combines a linear random-effects model for the underlying pattern of the marker with a log-normal survival model for the drop-out process. We extend the joint multivariate random-effects model to model simultaneously the CD4 cell and viral load data while adjusting for informative drop-outs due to disease progression or death. Estimates of all the model's parameters are obtained by using the restricted iterative generalized least squares method or a modified version of it using the EM algorithm as a nested algorithm in the case of censored survival data taking also into account non-linearity in the HIV–RNA trend. The method proposed is evaluated and compared with simpler approaches in a simulation study. Finally the method is applied to a subset of the data from the 'Concerted action on seroconversion to AIDS and death in Europe' study.  相似文献   

9.
When the outcome of interest is semicontinuous and collected longitudinally, efficient testing can be difficult. Daily rainfall data is an excellent example which we use to illustrate the various challenges. Even under the simplest scenario, the popular ‘two-part model’, which uses correlated random-effects to account for both the semicontinuous and longitudinal characteristics of the data, often requires prohibitively intensive numerical integration and difficult interpretation. Reducing data to binary (truncating continuous positive values to equal one), while relatively straightforward, leads to a potentially substantial loss in power. We propose an alternative: using a non-parametric rank test recently proposed for joint longitudinal survival data. We investigate the potential benefits of such a test for the analysis of semicontinuous longitudinal data with regards to power and computational feasibility.  相似文献   

10.
Summary.  The main advantage of longitudinal studies is that they can distinguish changes over time within individuals (longitudinal effects) from differences between subjects at the start of the study (base-line characteristics; cross-sectional effects). Often, especially in observational studies, subjects are very heterogeneous at base-line, and one may want to correct for this, when doing inferences for the longitudinal trends. Three procedures for base-line correction are compared in the context of linear mixed models for continuous longitudinal data. All procedures are illustrated extensively by using data from an experiment which aimed at studying the relationship between the post-operative evolution of the functional status of elderly hip fracture patients and their preoperative neurocognitive status.  相似文献   

11.
The mixed random effect model is commonly used in longitudinal data analysis within either frequentist or Bayesian framework. Here we consider a case, in which we have prior knowledge on partial parameters, while no such information on the rest of the parameters. Thus, we use the hybrid approach on the random-effects model with partial parameters. The parameters are estimated via Bayesian procedure, and the rest of parameters by the frequentist maximum likelihood estimation (MLE), simultaneously on the same model. In practice, we often know partial prior information such as, covariates of age, gender, etc. These information can be used, and accurate estimations in mixed random-effects model can be obtained. A series of simulation studies were performed to compare the results with the commonly used random-effects model with and without partial prior information. The results in hybrid estimation (HYB) and MLE were very close to each other. The estimated θ values in with partial prior information model (HYB) were more closer to true θ values, and showed less variances than without partial prior information in MLE. To compare with true θ values, the mean square of errors are much less in HYB than in MLE. This advantage of HYB is very obvious in longitudinal data with a small sample size. The methods of HYB and MLE are applied to a real longitudinal data for illustration purposes.  相似文献   

12.
Clustered or correlated samples of categorical response data arise frequently in many fields of application. The method of generalized estimating equations (GEEs) introduced in Liang and Zeger [Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), pp. 13–22] is often used to analyse this type of data. GEEs give consistent estimates of the regression parameters and their variance based upon the Pearson residuals. Park et al. [Alternative GEE estimation procedures for discrete longitudinal data, Comput. Stat. Data Anal. 28 (1998), pp. 243–256] considered a modification of the GEE approach using the Anscombe residual and the deviance residual. In this work, we propose to extend this idea to a family of generalized residuals. A wide simulation study is conducted for binary and Poisson correlated outcomes and also two numerical illustrations are presented.  相似文献   

13.
Misclassifications in binary responses have long been a common problem in medical and health surveys. One way to handle misclassifications in clustered or longitudinal data is to incorporate the misclassification model through the generalized estimating equation (GEE) approach. However, existing methods are developed under a non-survey setting and cannot be used directly for complex survey data. We propose a pseudo-GEE method for the analysis of binary survey responses with misclassifications. We focus on cluster sampling and develop analysis strategies for analyzing binary survey responses with different forms of additional information for the misclassification process. The proposed methodology has several attractive features, including simultaneous inferences for both the response model and the association parameters. Finite sample performance of the proposed estimators is evaluated through simulation studies and an application using a real dataset from the Canadian Longitudinal Study on Aging.  相似文献   

14.
Longitudinal data analysis requires a proper estimation of the within-cluster correlation structure in order to achieve efficient estimates of the regression parameters. When applying likelihood-based methods one may select an optimal correlation structure by the AIC or BIC. However, such information criteria are not applicable for estimating equation based approaches. In this paper we develop a model averaging approach to estimate the correlation matrix by a weighted sum of a group of patterned correlation matrices under the GEE framework. The optimal weight is determined by minimizing the difference between the weighted sum and a consistent yet inefficient estimator of the correlation structure. The computation of our proposed approach only involves a standard quadratic programming on top of the standard GEE procedure and can be easily implemented in practice. We provide theoretical justifications and extensive numerical simulations to support the application of the proposed estimator. A couple of well-known longitudinal data sets are revisited where we implement and illustrate our methodology.  相似文献   

15.
The generalized estimating equations (GEE) approach has attracted considerable interest for the analysis of correlated response data. This paper considers the model selection criterion based on the multivariate quasi‐likelihood (MQL) in the GEE framework. The GEE approach is closely related to the MQL. We derive a necessary and sufficient condition for the uniqueness of the risk function based on the MQL by using properties of differential geometry. Furthermore, we establish a formal derivation of model selection criterion as an asymptotically unbiased estimator of the prediction risk under this condition, and we explicitly take into account the effect of estimating the correlation matrix used in the GEE procedure.  相似文献   

16.
Abstract.  We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the non-parametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and non-parametric part of the model have properties parallel to those of parametric GEE, that is, the estimates are efficient if the covariance structure is correctly specified and they are still consistent and asymptotically normal even if the covariance structure is misspecified. By showing that our estimate achieves the semiparametric information bound, we actually establish the efficiency of estimating the parametric part of the model in a stronger sense than what is typically considered for GEE. The semiparametric efficiency of our estimate is obtained by assuming only conditional moment restrictions instead of the strict multivariate Gaussian error assumption.  相似文献   

17.
Generalized estimating equations (GEE) is one of the most commonly used methods for regression analysis of longitudinal data, especially with discrete outcomes. The GEE method accounts for the association among the responses of a subject through a working correlation matrix and its correct specification ensures efficient estimation of the regression parameters in the marginal mean regression model. This study proposes a predicted residual sum of squares (PRESS) statistic as a working correlation selection criterion in GEE. A simulation study is designed to assess the performance of the proposed GEE PRESS criterion and to compare its performance with its counterpart criteria in the literature. The results show that the GEE PRESS criterion has better performance than the weighted error sum of squares SC criterion in all cases but is surpassed in performance by the Gaussian pseudo-likelihood criterion. Lastly, the working correlation selection criteria are illustrated with data from the Coronary Artery Risk Development in Young Adults study.  相似文献   

18.
Intervention trials such as studies on smoking cessation may observe multiple, discrete outcomes over time. When the outcome is binary, participant observations may alternate between two states over the course of the study. The generalized estimating equation (GEE) approach is commonly used to analyze binary, longitudinal data in the context of independent variables. However, the sequence of observations may be assumed to follow a Markov chain with stationary transition probabilities when observations are made at fixed time points. Participants favoring the transition to one particular state over the other would be evidence of a trend in the observations. Using a log-transformed trend parameter, the determinants of a trend in a binary, longitudinal study may be evaluated by maximizing the likelihood function. A new methodology is presented here to test for the presence and determinants of a trend in binary, longitudinal observations. Empirical studies are evaluated and comparisons are made with the GEE approach. Practical application of the proposed method is made to the data available from an intervention study on smoking cessation.  相似文献   

19.
Abstract

It is one of the important issues in survival analysis to compare two hazard rate functions to evaluate treatment effect. It is quite common that the two hazard rate functions cross each other at one or more unknown time points, representing temporal changes of the treatment effect. In certain applications, besides survival data, we also have related longitudinal data available regarding some time-dependent covariates. In such cases, a joint model that accommodates both types of data can allow us to infer the association between the survival and longitudinal data and to assess the treatment effect better. In this paper, we propose a modelling approach for comparing two crossing hazard rate functions by joint modelling survival and longitudinal data. Maximum likelihood estimation is used in estimating the parameters of the proposed joint model using the EM algorithm. Asymptotic properties of the maximum likelihood estimators are studied. To illustrate the virtues of the proposed method, we compare the performance of the proposed method with several existing methods in a simulation study. Our proposed method is also demonstrated using a real dataset obtained from an HIV clinical trial.  相似文献   

20.
The causal effect of a treatment is estimated at different levels of treatment compliance, in a placebo-controlled trial on the reduction of blood pressure. The structural nested mean model makes no direct assumptions on selected treatment compliance levels and placebo prognosis but relies on the randomization assumption and a parametric form for causal effects. It can be seen as a regression model for unpaired data, where pre- and post-randomization covariables are treated differently. The causal parameters are found as solutions to estimating equations involving estimated placebo response and treatment compliance based on base-line covariates for all subjects. Our example considers a linear effect of the percentage of prescribed dose taken on achieved diastolic blood pressure reduction. We propose an exploration of structural model checks. In the example, this reveals an interaction between the causal effect of active dose taken and the base-line body weight of the patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号