首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Abstract

When the elements of a random vector take any real values, formulas of product moments are obtained for continuous and discrete random variables using distribution/survival functions. The random product can be that of strictly increasing functions of random variables. For continuous cases, the derivation based on iterated integrals is employed. It is shown that Hoeffding’s covariance lemma is algebraically equal to a special case of this result. For discrete cases, the elements of a random vector can be non-integers and/or unequally spaced. A discrete version of Hoeffding’s covariance lemma is derived for real-valued random variables.  相似文献   

2.
In complete samples from a continuous cumulative distribution with unknown parameters, it is known that various pivotal functions can be constructed by appealing to the probability integral transform. A pivotal function (or simply pivot) is a function of the data and parameters that has the property that its distribution is free of any unknown parameters. Pivotal functions play a key role in constructing confidence intervals and hypothesis tests. If there are nuisance parameters in addition to a parameter of interest, and consistent estimators of the nuisance parameters are available, then substituting them into the pivot can preserve the pivot property while altering the pivot distribution, or may instead create a function that is approximately a pivot in the sense that its asymptotic distribution is free of unknown parameters. In this latter case, bootstrapping has been shown to be an effective way of estimating its distribution accurately and constructing confidence intervals that have more accurate coverage probability in finite samples than those based on the asymptotic pivot distribution. In this article, one particular pivotal function based on the probability integral transform is considered when nuisance parameters are estimated, and the estimation of its distribution using parametric bootstrapping is examined. Applications to finding confidence intervals are emphasized. This material should be of interest to instructors of upper division and beginning graduate courses in mathematical statistics who wish to integrate bootstrapping into their lessons on interval estimation and the use of pivotal functions.

[Received November 2014. Revised August 2015.]  相似文献   

3.
ABSTRACT

Nonstandard mixtures are those that result from a mixture of a discrete and a continuous random variable. They arise in practice, for example, in medical studies of exposure. Here, a random variable that models exposure might have a discrete mass point at no exposure, but otherwise may be continuous. In this article we explore estimating the distribution function associated with such a random variable from a nonparametric viewpoint. We assume that the locations of the discrete mass points are known so that we will be able to apply a classical nonparametric smoothing approach to the problem. The proposed estimator is a mixture of an empirical distribution function and a kernel estimate of a distribution function. A simple theoretical argument reveals that existing bandwidth selection algorithms can be applied to the smooth component of this estimator as well. The proposed approach is applied to two example sets of data.  相似文献   

4.
Chen and Balakrishnan [Chen, G. and Balakrishnan, N., 1995, A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27, 154–161] proposed an approximate method of goodness-of-fit testing that avoids the use of extensive tables. This procedure first transforms the data to normality, and subsequently applies the classical tests for normality based on the empirical distribution function, and critical points thereof. In this paper, we investigate the potential of this method in comparison to a corresponding goodness-of-fit test which instead of the empirical distribution function, utilizes the empirical characteristic function. Both methods are in full generality as they may be applied to arbitrary laws with continuous distribution function, provided that an efficient method of estimation exists for the parameters of the hypothesized distribution.  相似文献   

5.
Approximate confidence intervals are given for the lognormal regression problem. The error in the nominal level can be reduced to O(n ?2), where n is the sample size. An alternative procedure is given which avoids the non-robust assumption of lognormality. This amounts to finding a confidence interval based on M-estimates for a general smooth function of both ? and F, where ? are the parameters of the general (possibly nonlinear) regression problem and F is the unknown distribution function of the residuals. The derived intervals are compared using theory, simulation and real data sets.  相似文献   

6.
ABSTRACT

The logistic distribution has a prominent role in the theory and practice of statistics. We introduce a new family of continuous distributions generated from a logistic random variable called the logistic-X family. Its density function can be symmetrical, left-skewed, right-skewed, and reversed-J shaped, and can have increasing, decreasing, bathtub, and upside-down bathtub hazard rates shaped. Further, it can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon entropy, and order statistics. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. We also investigate the properties of one special model, the logistic-Fréchet distribution, and illustrate its importance by means of two applications to real data sets.  相似文献   

7.
Process capability indices have been widely used to evaluate the process performance to the continuous improvement of quality and productivity. The distribution of the estimator of the process capability index C pmk is very complicated and the asymptotic distribution is proposed by Chen and Hsu [The asymptotic distribution of the processes capability index C pmk , Comm. Statist. Theory Methods 24(5) (1995), pp. 1279–1291]. However, we found a critical error for the asymptotic distribution when the population mean is not equal to the midpoint of the specification limits. In this paper, a correct version of the asymptotic distribution is given. An asymptotic confidence interval of C pmk by using the correct version of asymptotic distribution is proposed and the lower bound can be used to test if the process is capable. A simulation study of the coverage probability of the proposed confidence interval is shown to be satisfactory. The relation of six sigma technique and the index C pmk is also discussed in this paper. An asymptotic testing procedure to determine if a process is capable based on the index of C pmk is also given in this paper.  相似文献   

8.
Abstract

Analogs of the classical one way MANOVA model have recently been suggested that do not assume that population covariance matrices are equal or that the error vector distribution is known. These tests are based on the sample mean and sample covariance matrix corresponding to each of the p populations. We show how to extend these tests using other measures of location such as the trimmed mean or coordinatewise median. These new bootstrap tests can have some outlier resistance, and can perform better than the tests based on the sample mean if the error vector distribution is heavy tailed.  相似文献   

9.
Confidence intervals for a single parameter are spanned by quantiles of a confidence distribution, and one‐sided p‐values are cumulative confidences. Confidence distributions are thus a unifying format for representing frequentist inference for a single parameter. The confidence distribution, which depends on data, is exact (unbiased) when its cumulative distribution function evaluated at the true parameter is uniformly distributed over the unit interval. A new version of the Neyman–Pearson lemma is given, showing that the confidence distribution based on the natural statistic in exponential models with continuous data is less dispersed than all other confidence distributions, regardless of how dispersion is measured. Approximations are necessary for discrete data, and also in many models with nuisance parameters. Approximate pivots might then be useful. A pivot based on a scalar statistic determines a likelihood in the parameter of interest along with a confidence distribution. This proper likelihood is reduced of all nuisance parameters, and is appropriate for meta‐analysis and updating of information. The reduced likelihood is generally different from the confidence density. Confidence distributions and reduced likelihoods are rooted in Fisher–Neyman statistics. This frequentist methodology has many of the Bayesian attractions, and the two approaches are briefly compared. Concepts, methods and techniques of this brand of Fisher–Neyman statistics are presented. Asymptotics and bootstrapping are used to find pivots and their distributions, and hence reduced likelihoods and confidence distributions. A simple form of inverting bootstrap distributions to approximate pivots of the abc type is proposed. Our material is illustrated in a number of examples and in an application to multiple capture data for bowhead whales.  相似文献   

10.
《随机性模型》2013,29(2-3):343-375
Abstract

The purpose of this article is to present analytic methods for determining the asymptotic behaviour of the coefficents of power series that can be applied to homogeneous discrete quasi death and birth processes. It turns that there are in principle only three types for the asymptotic behaviour. The process either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence. The same results hold for the continuous case, too.  相似文献   

11.
In the last fifty years, a great deal of research effort has been made on the construction of simultaneous confidence bands for a linear regression function. Two most frequently quoted confidence bands in the statistics literature are the Scheffé type and constant width bands over a given rectangular region of the predictor variables. For the constant width bands, a method is given by Gafarian [Gafarian, A.V., 1964, Confidence bands in straight line regression. Journal of the American Statistical Association, 59, 182–213.] for the calculation of critical constants only for the special case of one predictor variable. In this article, a method is proposed to construct constant width bands when there are any number of predictor variables. A new criterion for assessing a confidence band is also proposed; it is the probability that a confidence band excludes a false regression function and can be viewed as the power function of a test associated, naturally, with a confidence band. Under this criterion, a numerical comparison between the Scheffé type and constant width bands is then carried out. It emerges from this comparison that the constant width bands can be better than the Scheffé type bands for certain designs.  相似文献   

12.
Abstract

In this paper, we consider a k-out-of-n system consisting of n identical components with independent lifetimes. We show that when the underlying distribution function F(t) is absolutely continuous, then it can be univocally determined by some particular mean residual lives or mean inactivity times of the system. It is then shown that these results may be extended to coherent (or mixed) systems.  相似文献   

13.
We obtain the necessary and sufficient conditions so that any real function (x) is the conditional expectation E(h(X)/Xx) of a random variable X with continuous distribution function, where h is a given real, continuous and strictly monotonic function.  相似文献   

14.
ABSTRACT

The binomial exponential 2 (BE2) distribution was proposed by Bakouch et al. as a distribution of a random sum of independent exponential random variables, when the sample size has a zero truncated binomial distribution. In this article, we introduce a generalization of BE2 distribution which offers a more flexible model for lifetime data than the BE2 distribution. The hazard rate function of the proposed distribution can be decreasing, increasing, decreasing–increasing–decreasing and unimodal, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties and parameters estimation of the distribution are investigated. Three different algorithms are proposed for generating random data from the new distribution. Two real data applications regarding the strength data and Proschan's air-conditioner data are used to show that the new distribution is better than the BE2 distribution and some other well-known distributions in modeling lifetime data.  相似文献   

15.
A great deal of inference in statistics is based on making the approximation that a statistic is normally distributed. The error in doing so is generally O(n?1/2), where n is the sample size and can be considered when the distribution of the statistic is heavily biased or skewed. This note shows how one may reduce the error to O(n?(j+1)/2), where j is a given integer. The case considered is when the statistic is the mean of the sample values of a continuous distribution with a scale or location change after the sample has undergone an initial transformation, which may depend on an unknown parameter. The transformation corresponding to Fisher's score function yields an asymptotically efficient procedure.  相似文献   

16.
Abstract

Based on the approach of Pan and Zhou, we demonstrate that empirical likelihood ratios in terms of cumulative hazard function for left-truncated and right-censored (LTRC) data can be used to form confidence intervals for the parameters that are linear functionals of the cumulative hazard function. Simulation studies indicate that the empirical likelihood ratio based confidence intervals work well in finite samples.  相似文献   

17.
ABSTRACT

In economics and government statistics, aggregated data instead of individual level data are usually reported for data confidentiality and for simplicity. In this paper we develop a method of flexibly estimating the probability density function of the population using aggregated data obtained as group averages when individual level data are grouped according to quantile limits. The kernel density estimator has been commonly applied to such data without taking into account the data aggregation process and has been shown to perform poorly. Our method models the quantile function as an integral of the exponential of a spline function and deduces the density function from the quantile function. We match the aggregated data to their theoretical counterpart using least squares, and regularize the estimation by using the squared second derivatives of the density function as the penalty function. A computational algorithm is developed to implement the method. Application to simulated data and US household income survey data show that our penalized spline estimator can accurately recover the density function of the underlying population while the common use of kernel density estimation is severely biased. The method is applied to study the dynamic of China's urban income distribution using published interval aggregated data of 1985–2010.  相似文献   

18.
ABSTRACT

For a random sample from a population with a continuous density function over its bounded support, when the sample size turns to infinity, we explore the uniform integrability of normalized extreme order statistics, for which we obtain limit equivalent expressions of variances. Moreover, we prove that the covariance of the minimum and the maximum of the sample can be bounded by two expressions that are same order infinitesimals. Examples with simulated results are provided to demonstrate the application of our theorems.  相似文献   

19.
In many areas of application, especially life testing and reliability, it is often of interest to estimate an unknown cumulative distribution (cdf). A simultaneous confidence band (SCB) of the cdf can be used to assess the statistical uncertainty of the estimated cdf over the entire range of the distribution. Cheng and Iles [1983. Confidence bands for cumulative distribution functions of continuous random variables. Technometrics 25 (1), 77–86] presented an approach to construct an SCB for the cdf of a continuous random variable. For the log-location-scale family of distributions, they gave explicit forms for the upper and lower boundaries of the SCB based on expected information. In this article, we extend the work of Cheng and Iles [1983. Confidence bands for cumulative distribution functions of continuous random variables. Technometrics 25 (1), 77–86] in several directions. We study the SCBs based on local information, expected information, and estimated expected information for both the “cdf method” and the “quantile method.” We also study the effects of exceptional cases where a simple SCB does not exist. We describe calibration of the bands to provide exact coverage for complete data and type II censoring and better approximate coverage for other kinds of censoring. We also discuss how to extend these procedures to regression analysis.  相似文献   

20.
It is well-known that when ranked set sampling (RSS) scheme is employed to estimate the mean of a population, it is more efficient than simple random sampling (SRS) with the same sample size. One can use a RSS analog of SRS regression estimator to estimate the population mean of Y using its concomitant variable X when they are linearly related. Unfortunately, the variance of this estimate cannot be evaluated unless the distribution of X is known. We investigate the use of resampling methods to establish confidence intervals for the regression estimation of the population mean. Simulation studies show that the proposed methods perform well in a variety of situations when the assumption of linearity holds, and decently well under mild non-linearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号