共查询到20条相似文献,搜索用时 31 毫秒
1.
Shuvashree Mondal 《统计学通讯:理论与方法》2019,48(10):2602-2618
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems. 相似文献
2.
3.
Yanbin Ma 《Journal of applied statistics》2019,46(5):771-797
In this paper, we consider the problem of estimating the scale parameter of the inverse Rayleigh distribution based on general progressively Type-II censored samples and progressively Type-II censored samples. The pivotal quantity method is used to derive the estimator of the scale parameter. Besides, considering that the maximum likelihood estimator is tough to obtain for this distribution, we derive an explicit estimator of the scale parameter by approximating the likelihood equation with Taylor expansion. The interval estimation is also studied based on pivotal inference. Then we conduct Monte Carlo simulations and compare the performance of different estimators. We demonstrate that the pivotal inference is simpler and more effective. The further application of the pivotal quantity method is also discussed theoretically. Finally, two real data sets are analyzed using our methods. 相似文献
4.
Fariba Hemmati 《统计学通讯:模拟与计算》2013,42(1):52-75
In this article, we obtain the maximum likelihood estimators (MLEs) and approximate maximum likelihood estimators (AMLEs) of the parameters, from a two-parameter log-normal distribution based on the adaptive Type-II progressive hybrid censoring scheme, which was introduced by Ng et al. (2009) for life testing or reliability experiment. In order to compare the results, we calculate corresponding estimators of the Type-II progressive hybrid censoring scheme. In particular, we provide computational formulas of the expected total test time and the expected number of failures for each scheme. We also compute the observed Fisher information matrix and use them to obtain the asymptotic confidence intervals. A simulation study carries out to evaluate the bias and mean square error of the MLEs and AMLEs from the two above-mentioned schemes. Finally, we present a numerical example to illustrate the methods of inference discussed here. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(2):339-356
The Maxwell (or Maxwell–Boltzmann) distribution was invented to solve the problems relating to physics and chemistry. It has also proved its strength of analysing the lifetime data. For this distribution, we consider point and interval estimation procedures in the presence of type-I progressively hybrid censored data. We obtain maximum likelihood estimator of the parameter and provide asymptotic and bootstrap confidence intervals of it. The Bayes estimates and Bayesian credible and highest posterior density intervals are obtained using inverted gamma prior. The expression of the expected number of failures in life testing experiment is also derived. The results are illustrated through the simulation study and analysis of a real data set is presented. 相似文献
6.
Shuo-Jye Wu 《Journal of applied statistics》2008,35(10):1139-1150
In this paper, we investigate the estimation problem concerning a progressively type-II censored sample from the two-parameter bathtub-shaped lifetime distribution. We use the maximum likelihood method to obtain the point estimators of the parameters. We also provide a method for constructing an exact confidence interval and an exact joint confidence region for the parameters. Two numerical examples are presented to illustrate the method of inference developed here. Finally, Monte Carlo simulation studies are used to assess the performance of our proposed method. 相似文献
7.
8.
Kundu and Gupta [Analysis of hybrid life-tests in presence of competing risks. Metrica. 2007;65:159–170] provided the analysis of Type-I hybrid censored competing risks data, when the lifetime distributions of the competing cause of failures follows exponential distribution. In this paper, we consider the analysis of Type-II hybrid censored competing risks data. It is assumed that latent lifetime distributions of the competing causes of failures follow independent exponential distributions with different scale parameters. It is observed that the maximum likelihood estimators of the unknown parameters do not always exist. We propose the modified estimators of the scale parameters, which coincide with the corresponding maximum likelihood estimators when they exist, and asymptotically they are equivalent. We obtain the exact distribution of the proposed estimators. Using the exact distributions of the proposed estimators, associated confidence intervals are obtained. The asymptotic and bootstrap confidence intervals of the unknown parameters are also provided. Further, Bayesian inference of some unknown parametric functions under a very flexible Beta-Gamma prior is considered. Bayes estimators and associated credible intervals of the unknown parameters are obtained using the Monte Carlo method. Extensive Monte Carlo simulations are performed to see the effectiveness of the proposed estimators and one real data set has been analysed for the illustrative purposes. It is observed that the proposed model and the method work quite well for this data set. 相似文献
9.
Fariba Hemmati 《统计学通讯:模拟与计算》2017,46(6):4671-4693
In this article, a competing risks model based on exponential distributions is considered under the adaptive Type-II progressively censoring scheme introduced by Ng et al. [2009, Naval Research Logistics 56:687-698], for life testing or reliability experiment. Moreover, we assumed that some causes of failures are unknown. The maximum likelihood estimators (MLEs) of unknown parameters are established. The exact conditional and the asymptotic distributions of the obtained estimators are derived to construct the confidence intervals as well as the two different bootstraps of different unknown parameters. Under suitable priors on the unknown parameters, Bayes estimates and the corresponding two sides of Bayesian probability intervals are obtained. Also, for the purpose of evaluating the average bias and mean square error of the MLEs, and comparing the confidence intervals based on all mentioned methods, a simulation study was carried out. Finally, we present one real dataset to conduct the proposed methods. 相似文献
10.
《Scandinavian Journal of Statistics》2018,45(1):135-163
We discuss a new way of constructing pointwise confidence intervals for the distribution function in the current status model. The confidence intervals are based on the smoothed maximum likelihood estimator, using local smooth functional theory and normal limit distributions. Bootstrap methods for constructing these intervals are considered. Other methods to construct confidence intervals, using the non‐standard limit distribution of the (restricted) maximum likelihood estimator, are compared with our approach via simulations and real data applications. 相似文献
11.
《Journal of Statistical Computation and Simulation》2012,82(10):1989-2006
ABSTRACTIn this article, we consider a simple step-stress life test in the presence of exponentially distributed competing risks. It is assumed that the stress is changed when a pre-specified number of failures takes place. The data is assumed to be Type-II censored. We obtain the maximum likelihood estimators of the model parameters and the exact conditional distributions of the maximum likelihood estimators. Based on the conditional distribution, approximate confidence intervals (CIs) of unknown parameters have been constructed. Percentile bootstrap CIs of model parameters are also provided. Optimal test plan is addressed. We perform an extensive simulation study to observe the behaviour of the proposed method. The performances are quite satisfactory. Finally we analyse two data sets for illustrative purposes. 相似文献
12.
Manoj Kumar Rastogi 《Journal of applied statistics》2014,41(11):2375-2405
In this paper, we consider estimation of unknown parameters of an inverted exponentiated Rayleigh distribution under type II progressive censored samples. Estimation of reliability and hazard functions is also considered. Maximum likelihood estimators are obtained using the Expectation–Maximization (EM) algorithm. Further, we obtain expected Fisher information matrix using the missing value principle. Bayes estimators are derived under squared error and linex loss functions. We have used Lindley, and Tiernery and Kadane methods to compute these estimates. In addition, Bayes estimators are computed using importance sampling scheme as well. Samples generated from this scheme are further utilized for constructing highest posterior density intervals for unknown parameters. For comparison purposes asymptotic intervals are also obtained. A numerical comparison is made between proposed estimators using simulations and observations are given. A real-life data set is analyzed for illustrative purposes. 相似文献
13.
AbstractUnder progressive Type-II censoring, inference of stress-strength reliability (SSR) is studied for a general family of lower truncated distributions. When the lifetime models of the strength and stress variables have arbitrary and common parameters, maximum likelihood and pivotal quantities based generalized estimators of SSR are established, respectively. Confidence intervals are constructed based on generalized pivotal quantities and bootstrap technique under different parameter cases as well. In addition, to compare the equivalence of the strength and stress parameters, likelihood ratio testing of interested parameters is provided as a complementary. Simulation studies and two real-life data examples are provided to investigate the performance of proposed methods. 相似文献
14.
Based on progressively Type II censored samples, we consider the estimation of R = P(Y < X) when X and Y are two independent Weibull distributions with different shape parameters, but having the same scale parameter. The maximum likelihood estimator, approximate maximum likelihood estimator, and Bayes estimator of R are obtained. Based on the asymptotic distribution of R, the confidence interval of R are obtained. Two bootstrap confidence intervals are also proposed. Analysis of a real data set is given for illustrative purposes. Monte Carlo simulations are also performed to compare the different proposed methods. 相似文献
15.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes. 相似文献
16.
Benjamin Laumen 《Statistics》2019,53(3):569-600
In this paper, we revisit the progressive Type-I censoring scheme as it has originally been introduced by Cohen [Progressively censored samples in life testing. Technometrics. 1963;5(3):327–339]. In fact, original progressive Type-I censoring proceeds as progressive Type-II censoring but with fixed censoring times instead of failure time based censoring times. Apparently, a time truncation has been added to this censoring scheme by interpreting the final censoring time as a termination time. Therefore, not much work has been done on Cohens's original progressive censoring scheme with fixed censoring times. Thus, we discuss distributional results for this scheme and establish exact distributional results in likelihood inference for exponentially distributed lifetimes. In particular, we obtain the exact distribution of the maximum likelihood estimator (MLE). Further, the stochastic monotonicity of the MLE is verified in order to construct exact confidence intervals for both the scale parameter and the reliability. 相似文献
17.
Salman Babayi 《统计学通讯:模拟与计算》2018,47(7):1975-1995
This article studies the estimation of the reliability R = P[Y < X] when X and Y come from two independent generalized logistic distributions of Type-II with different parameters, based on progressively Type-II censored samples. When the common scale parameter is unknown, the maximum likelihood estimator and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique have been proposed too. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are extracted. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real dataset is given for illustrative purposes. Finally, methods are extended for proportional hazard rate models. 相似文献
18.
《Journal of Statistical Computation and Simulation》2012,82(11):1607-1620
This article presents the statistical inferences on Weibull parameters with the data that are progressively type II censored. The maximum likelihood estimators are derived. For incorporation of previous information with current data, the Bayesian approach is considered. We obtain the Bayes estimators under squared error loss with a bivariate prior distribution, and derive the credible intervals for the parameters of Weibull distribution. Also, the Bayes prediction intervals for future observations are obtained in the one- and two-sample cases. The method is shown to be practical, although a computer program is required for its implementation. A numerical example is presented for illustration and some simulation study are performed. 相似文献
19.
《Journal of Statistical Computation and Simulation》2012,82(10):2036-2052
ABSTRACTDistributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics. 相似文献
20.
Let ( X , Y ) be a random vector, where Y denotes the variable of interest possibly subject to random right censoring, and X is a covariate. We construct confidence intervals and bands for the conditional survival and quantile function of Y given X using a non-parametric likelihood ratio approach. This approach was introduced by Thomas & Grunkemeier (1975 ), who estimated confidence intervals of survival probabilities based on right censored data. The method is appealing for several reasons: it always produces intervals inside [0, 1], it does not involve variance estimation, and can produce asymmetric intervals. Asymptotic results for the confidence intervals and bands are obtained, as well as simulation results, in which the performance of the likelihood ratio intervals and bands is compared with that of the normal approximation method. We also propose a bandwidth selection procedure based on the bootstrap and apply the technique on a real data set. 相似文献