首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems.  相似文献   

2.
3.
The Maxwell (or Maxwell–Boltzmann) distribution was invented to solve the problems relating to physics and chemistry. It has also proved its strength of analysing the lifetime data. For this distribution, we consider point and interval estimation procedures in the presence of type-I progressively hybrid censored data. We obtain maximum likelihood estimator of the parameter and provide asymptotic and bootstrap confidence intervals of it. The Bayes estimates and Bayesian credible and highest posterior density intervals are obtained using inverted gamma prior. The expression of the expected number of failures in life testing experiment is also derived. The results are illustrated through the simulation study and analysis of a real data set is presented.  相似文献   

4.
In this article, we develop exact inference for two populations that have a two-parameter exponential distribution with the same location parameter and different scale parameters when Type-II censoring is implemented on the two samples in a combined manner. We obtain the conditional maximum likelihood estimators (MLEs) of the three parameters. We then derive the exact distributions of these MLEs along with their moment generating functions. Based on general entropy loss function, Bayesian study about the parameters is presented. Finally, some simulation results and an illustrative example are presented to illustrate the methods of inference developed here.  相似文献   

5.
This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.  相似文献   

6.
In this paper, progressive-stress accelerated life tests are applied when the lifetime of a product under design stress follows the exponentiated distribution [G(x)]α. The baseline distribution, G(x), follows a general class of distributions which includes, among others, Weibull, compound Weibull, power function, Pareto, Gompertz, compound Gompertz, normal and logistic distributions. The scale parameter of G(x) satisfies the inverse power law and the cumulative exposure model holds for the effect of changing stress. A special case for an exponentiated exponential distribution has been discussed. Using type-II progressive hybrid censoring and MCMC algorithm, Bayes estimates of the unknown parameters based on symmetric and asymmetric loss functions are obtained and compared with the maximum likelihood estimates. Normal approximation and bootstrap confidence intervals for the unknown parameters are obtained and compared via a simulation study.  相似文献   

7.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

8.
From the exact distribution of the maximum likelihood estimator of the average lifetime based on progressive hybrid exponential censored sample, we derive an explicit expression for the Bayes risk of a sampling plan when a quadratic loss function is used. The simulated annealing algorithm is then used to determine the optimal sampling plan. Some optimal Bayes solutions under progressive hybrid and ordinary hybrid censoring schemes are presented to illustrate the effectiveness of the proposed method.  相似文献   

9.
In this paper, we investigate the estimation problem concerning a progressively type-II censored sample from the two-parameter bathtub-shaped lifetime distribution. We use the maximum likelihood method to obtain the point estimators of the parameters. We also provide a method for constructing an exact confidence interval and an exact joint confidence region for the parameters. Two numerical examples are presented to illustrate the method of inference developed here. Finally, Monte Carlo simulation studies are used to assess the performance of our proposed method.  相似文献   

10.
In this paper, the problem of estimating unknown parameters of a two-parameter Kumaraswamy-Exponential (Kw-E) distribution is considered based on progressively type-II censored sample. The maximum likelihood (ML) estimators of the parameters are obtained. Bayes estimates are also obtained using different loss functions such as squared error, LINEX and general entropy. Lindley's approximation method is used to evaluate these Bayes estimates. Monte Carlo simulation is used for numerical comparison between various estimates developed in this paper.  相似文献   

11.
ABSTRACT

Censoring frequently occurs in survival analysis but naturally observed lifetimes are not of a large size. Thus, inferences based on the popular maximum likelihood (ML) estimation which often give biased estimates should be corrected in the sense of bias. Here, we investigate the biases of ML estimates under the progressive type-II censoring scheme (pIIcs). We use a method proposed in Efron and Johnstone [Fisher's information in terms of the hazard rate. Technical Report No. 264, January 1987, Stanford University, Stanford, California; 1987] to derive general expressions for bias corrected ML estimates under the pIIcs. This requires derivation of the Fisher information matrix under the pIIcs. As an application, exact expressions are given for bias corrected ML estimates of the Weibull distribution under the pIIcs. The performance of the bias corrected ML estimates and ML estimates are compared by simulations and a real data application.  相似文献   

12.
In this article, we introduce a new scheme called joint progressive type-I (JPC-I) censored and as a special case, joint type-I censored scheme. Bayesian and non Bayesian estimators have been obtained for two exponential populations under both JPC-I censored scheme and joint type-I censored. The maximum likelihood estimators of the parameters, the asymptotic variance covariance matrix, have been obtained. Bayes estimators have been developed under squared error loss function using independent gamma prior distributions. Moreover, approximate confidence region based on the asymptotic normality of the maximum likelihood estimators and credible confidence region from a Bayesian viewpoint are also discussed and compared with two Bootstrap confidence regions. A numerical illustration for these new results is given.  相似文献   

13.
Adaptive Type-II progressive censoring schemes have been shown to be useful in striking a balance between statistical estimation efficiency and the time spent on a life-testing experiment. In this article, some general statistical properties of an adaptive Type-II progressive censoring scheme are first investigated. A bias correction procedure is proposed to reduce the bias of the maximum likelihood estimators (MLEs). We then focus on the extreme value distributed lifetimes and derive the Fisher information matrix for the MLEs based on these properties. Four different approaches are proposed to construct confidence intervals for the parameters of the extreme value distribution. Performance of these methods is compared through an extensive Monte Carlo simulation.  相似文献   

14.
In this paper, we consider the problem of estimating the scale parameter of the inverse Rayleigh distribution based on general progressively Type-II censored samples and progressively Type-II censored samples. The pivotal quantity method is used to derive the estimator of the scale parameter. Besides, considering that the maximum likelihood estimator is tough to obtain for this distribution, we derive an explicit estimator of the scale parameter by approximating the likelihood equation with Taylor expansion. The interval estimation is also studied based on pivotal inference. Then we conduct Monte Carlo simulations and compare the performance of different estimators. We demonstrate that the pivotal inference is simpler and more effective. The further application of the pivotal quantity method is also discussed theoretically. Finally, two real data sets are analyzed using our methods.  相似文献   

15.
This paper deals with a new censoring scheme, called ‘Block Censoring’ which reduces considerably the total time on test in the life testing experiments with respect to the common used experimental tests such as rightly censored data. This new scheme is analysed when the lifetimes of products follow the two-parameter exponential distribution. Specially, it is proved that the respective spacings are independently distributed exponential. The problem of estimating parameters is investigated in details.A Monte Carlo simulation is conducted for obtaining the optimal block censoring scheme in the sense of the shortest expected test time. Finally, a real data set on times to breakdown of an insulating fluid between electrodes from Nelson [Applied life data analysis. New York: Wiley; 1982. p.105] is analysed.  相似文献   

16.
In this paper, we consider estimation of unknown parameters of an inverted exponentiated Rayleigh distribution under type II progressive censored samples. Estimation of reliability and hazard functions is also considered. Maximum likelihood estimators are obtained using the Expectation–Maximization (EM) algorithm. Further, we obtain expected Fisher information matrix using the missing value principle. Bayes estimators are derived under squared error and linex loss functions. We have used Lindley, and Tiernery and Kadane methods to compute these estimates. In addition, Bayes estimators are computed using importance sampling scheme as well. Samples generated from this scheme are further utilized for constructing highest posterior density intervals for unknown parameters. For comparison purposes asymptotic intervals are also obtained. A numerical comparison is made between proposed estimators using simulations and observations are given. A real-life data set is analyzed for illustrative purposes.  相似文献   

17.
In this paper, we have introduced a new type of censoring scheme named the multiple interval type-I censoring scheme. Further, We have assumed that the test units are drawn from the Weibull population. We have also proposed the maximum product of spacing estimators for unknown parameters under the multiple interval type-I censoring scheme and compare them with the existing maximum likelihood estimators. In addition to this, the Bayes estimators for shape and scale parameters are also obtained under the squared error loss function. Their corresponding asymptotic confidence/credible intervals are also discussed. A real data set containing the breakdown time of insulating fluids are used to demonstrate the appropriateness of the proposed methodology.  相似文献   

18.
Following the work of Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring. Comm Statist Theory Methods. 1988;17:1857–1870], several results have been developed regarding the exact likelihood inference of exponential parameters based on different forms of censored samples. In this paper, the conditional maximum likelihood estimators (MLEs) of two exponential mean parameters are derived under joint generalized Type-I hybrid censoring on the two samples. The moment generating functions (MGFs) and the exact densities of the conditional MLEs are obtained, using which exact confidence intervals are then developed for the model parameters. We also derive the means, variances, and mean squared errors of these estimates. An efficient computational method is developed based on the joint MGF. Finally, an example is presented to illustrate the methods of inference developed here.  相似文献   

19.
20.
In reliability analysis, accelerated life-testing allows for gradual increment of stress levels on test units during an experiment. In a special class of accelerated life tests known as step-stress tests, the stress levels increase discretely at pre-fixed time points, and this allows the experimenter to obtain information on the parameters of the lifetime distributions more quickly than under normal operating conditions. Moreover, when a test unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. In this article, we consider the simple step-stress model under Type-II censoring when the lifetime distributions of the different risk factors are independently exponentially distributed. Under this setup, we derive the maximum likelihood estimators (MLEs) of the unknown mean parameters of the different causes under the assumption of a cumulative exposure model. The exact distributions of the MLEs of the parameters are then derived through the use of conditional moment generating functions. Using these exact distributions as well as the asymptotic distributions and the parametric bootstrap method, we discuss the construction of confidence intervals for the parameters and assess their performance through Monte Carlo simulations. Finally, we illustrate the methods of inference discussed here with an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号