首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

In this article, a new non parametric control chart based on the modified or controlled exponentially weighted moving average (EWMA) statistic is developed to monitor the process deviation from the target value. The proposed control chart is evaluated for different values of design parameters using the average run length as a performance criterion under various sample sizes. The proposed chart is compared with the existing non parametric EWMA sign control chart. It is observed that the proposed chart is better than the existing EWMA sign control chart in terms of run length characteristics. An empirical example is provided for the practical implementation of the proposed chart.  相似文献   

3.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules.  相似文献   

4.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift.  相似文献   

5.
In this article, an attribute control chart is proposed for time truncated tests using the Weibull distribution. The design of proposed control chart is presented using the multiple dependent state (MDS) sampling. The control chart coefficients are determined for various specified average run length. The efficiency of the proposed control chart is elaborated with the help of a simulation data and a real data. The proposed control chart perform better than the existing control chart in terms of average run length.  相似文献   

6.
In this paper, a control chart has been developed for the Conway–Maxwell Poisson (COM-Poisson) distribution using the modified exponentially weighted moving average statistic. The proposed chart provides an efficient detection of smaller changes in the location parameter of the COM-Poisson distribution. The performance of the proposed control chart has been evaluated by the average and the standard deviation of the run length distribution for various parameters. Better detecting ability has also been compared with the existing control chart using EWMA statistic. Using simulation, we also showed the detecting ability over the traditional EWMA chart.  相似文献   

7.
Control charts using repetitive group sampling have attracted a great deal of attention during the last few years. In the present article, we attempt to develop a control chart for the multivariate Poisson distribution using the repetitive group sampling scheme. In the proposed control chart, the monitoring statistic from the multivariate Poisson distribution has been used for the quick detection of the deteriorated process to avoid losses. The control coefficients have been estimated using the specified in-control average run lengths. The procedure of the proposed control chart has been explained by using the real-world example and a simulated data set. It has been observed that the proposed control chart is an efficient development for the quick detection of the nonrandom change in the manufacturing process.  相似文献   

8.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules.

A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control.  相似文献   

9.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

10.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

11.
12.
Control charts have been popularly used as a user-friendly yet technically sophisticated tool to monitor whether a process is in statistical control or not. These charts are basically constructed under the normality assumption. But in many practical situations in real life this normality assumption may be violated. One such non-normal situation is to monitor the process variability from a skewed parent distribution where we propose the use of a Maxwell control chart. We introduce a pivotal quantity for the scale parameter of the Maxwell distribution which follows a gamma distribution. Probability limits and L-sigma limits are studied along with performance measure based on average run length and power curve. To avoid the complexity of future calculations for practitioners, factors for constructing control chart for monitoring the Maxwell parameter are given for different sample sizes and for different false alarm rate. We also provide simulated data to illustrate the Maxwell control chart. Finally, a real life example has been given to show the importance of such a control chart.  相似文献   

13.
14.
The shape features of run chart patterns of the most recent m observations arising from stable and unstable processes are different. Using this fact, a new monitoring statistic is defined whose value for given m depends on the pattern parameters but not on the process parameters. A control chart for this statistic for given m, therefore, will be globally applicable to normal processes. The simulation study reveals that the proposed statistic approximately follows normal distribution. The performances of the globally applicable control chart in terms of average run lengths (ARLs) are evaluated and compared with the X chart. Both in-control ARL and out-of-control ARLs with respect to different abnormal process conditions are found to be larger than the X chart. However, the proposed concept is promising because it can eliminate the burden of designing separate control charts for different quality characteristics or processes in a manufacturing set-up.  相似文献   

15.
The coefficient of variation (CV) control chart has recently been introduced in the literature. Here, the salient features of this chart and the conforming run length chart are integrated to produce a synthetic coefficient of variation (SynCV) chart. The run length profile of the SynCV chart is numerically compared with the originally proposed chart and the upward EWMA-γ2 chart. The SynCV chart outperforms the original CV chart, while the EWMA-γ2 outperforms the SynCV chart for small increases in the CV. However, for large increases in the CV, the SynCV chart outperforms the EWMA-γ2 chart.  相似文献   

16.
In this article, we will present a control chart using normal transformation and generally weighted moving average (GWMA) statistic when the quality characteristic follows the exponential distribution. We will develop the necessary measures to monitor the mean of the process using GWMA statistic and analyze the performance using simulation. The average run lengths for monitoring process average are given for various process shifts. The performance of the proposed chart is examined and compared with the existing control chart. The proposed control chart is effective for the monitoring of small shifts in the mean process. The application of the proposed chart is illustrated with the help of simulated data.  相似文献   

17.
Because manufacturing lot sizes continue to shrink, statistical process control methods for short production runs are increasingly important. We review and comment on the assumptions, advantages and disadvantages of alternatives, Traditional methods well as more recent developments are described and contrasted.  相似文献   

18.
A new control chart is proposed by using the belief statistic for the exponential distribution. The structure of the proposed control chart is given to measure the average run length for the shifted process. The comparison of the proposed chart is given with the existing charts in terms of the average run lengths, which shows the outperformance of the proposed chart. The performance of the proposed control chart is also discussed with the help of simulated data.  相似文献   

19.
The adaptive memory-type control charts, including the adaptive exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, have gained considerable attention because of their excellent speed in providing overall good detection over a range of mean shift sizes. In this paper, we propose a new adaptive EWMA (AEWMA) chart using the auxiliary information for efficiently monitoring the infrequent changes in the process mean. The idea is to first estimate the unknown process mean shift using an auxiliary information based mean estimator, and then adaptively update the smoothing constant of the EWMA chart. Using extensive Monte Carlo simulations, the run length profiles of the AEWMA chart are computed and explored. The AEWMA chart is compared with the existing control charts, including the classical EWMA, CUSUM, synthetic EWMA and synthetic CUSUM charts, in terms of the run length characteristics. It turns out that the AEWMA chart performs uniformly better than these control charts when detecting a range of mean shift sizes. An illustrative example is also presented to demonstrate the working and implementation of the proposed and existing control charts.  相似文献   

20.
Statistical control charts are widely used in the manufacturing industry. The Shewhart-type control charts are developed to improve the monitoring process mean by using the double quartile-ranked set sampling, quartile double-ranked set sampling, and double extreme-ranked set sampling methods. In terms of the average run length, the performance of the proposed control charts are compared with the existing control charts based on simple random sampling, ranked set sampling and extreme-ranked set sampling methods. An application of real data is also considered to investigate the performance of the suggested process mean control charts. The findings of the study revealed that the newly suggested control charts are superior to the existing counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号