首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been recently revealed that the Shewhart control charts with variable sampling interval (VSI) perform better than the traditional Shewhart chart with the fixed sampling interval in detecting shifts in the process. In most of these research works, the normality and independency of the process data or measurements are assumed and that the process is subjected to only one assignable cause. While, in practice, these assumptions usually do not hold, some recent studies are focused on working with only one or two of these violations. In this paper, the situation in which the process data are correlated and follow a non-normal distribution and that there is multiplicity of assignable causes in the process is considered. For this case, a cost model for the economic design of the VSI X? control chart is developed, where the Burr distribution is employed to represent the non-normal distribution of the process data. To obtain the optimal values of the design parameters, a genetic algorithm is employed in which the response surface methodology is applied. A numerical example is presented to show the applicability and effectiveness of the proposed methodology. Sensitivity analysis is also carried out to evaluate the effects of cost and input parameters on the performance of the chart.  相似文献   

2.
Control charts show the distinction between the random and assignable causes of variation in a process. The real process may be affected by many characteristics and several assignable causes. Therefore, the economic statistical design of multiple control chart under Burr XII shock model with multiple assignable causes can be an appropriate candidate model. In this paper, we develop a cost model based on the optimization of the average cost per unit of time. Indeed, the cost model under the influence of a single match case assignable cause and multiple assignable causes under a same cost and time parameters were compared. Besides, a sensitivity analysis was also presented in which the changeability of loss-cost and design parameters were evaluated based on the changes in cost, time and Burr XII distribution parameters.  相似文献   

3.
A proper monitoring of stochastic systems is the control charts of statistical process control and drift in characteristics of output may be due to one or several assignable causes. Although much research has been done on the design of control charts, the economic statistical design of the T2 control chart under the Weibull shock model with multiple assignable causes has not yet been addressed. Therefore, we tried to deal with it in this paper and thus we developed a cost model based on the variable sampling interval. We also give an example to support the practical use of T2 chart under the Weibull shock model with multiple assignable causes. Based on the optimization of the average cost per unit of time and taking into account the different combination values of Weibull distribution parameters, optimal values of design parameters were derived and calculated. Then, the cost models under the influence of single assignable cause and multiple assignable causes under the same cost and time parameters were compared. Also, a sensitivity analysis was conducted in which the variability of loss cost and design parameters due to change of cost and time and Weibull distribution parameters were evaluated.  相似文献   

4.
The usual practice in using a Bayesian control chart to monitor a process is done by taking samples from the process with fixed sampling intervals. Recent studies on traditional control charts have shown that variable sampling interval (VSI) scheme compared to classical scheme (fixed ratio sampling, FRS) helps practitioners to detect process shifts more quickly. In this paper, the effectiveness of VSI scheme on performance of Bayesian control chart has been studied, based on economic (ED) and economic–statistical designs (ESD). Monte Carlo method and artificial bee colony algorithm have been utilized to obtain optimal design parameters of Bayesian control chart (sample size, sampling intervals, warning limit and control limit) since the statistic of this approach does not have any specified distribution. Finally, VSI Bayesian control chart has been compared to FRS Bayesian and VSI X-bar approaches based on ED and ESD, separately. According to the results, it has been found that the performance of VSI Bayesian scheme is better than FRS Bayesian and VSI X-bar approaches.  相似文献   

5.
The exponentially weighted moving average (EWMA) control charts with variable sampling intervals (VSIs) have been shown to be substantially quicker than the fixed sampling intervals (FSI) EWMA control charts in detecting process mean shifts. The usual assumption for designing a control chart is that the data or measurements are normally distributed. However, this assumption may not be true for some processes. In the present paper, the performances of the EWMA and combined –EWMA control charts with VSIs are evaluated under non-normality. It is shown that adding the VSI feature to the EWMA control charts results in very substantial decreases in the expected time to detect shifts in process mean under both normality and non-normality. However, the combined –EWMA chart has its false alarm rate and its detection ability is affected if the process data are not normally distributed.  相似文献   

6.
Three parameters—sample size, sampling intervals, and the control limits—must be determined when the x bar chart to monitor a manufacturing process. The constant sampling intervals were widely employed because of its administrative simplicity. However, the variable sampling interval (VSI) has recently been shown to give substantially faster detection of most process shifts than fixed-sampling-interval (FSI) for x-bar charts. In addition, these measurements in the subgroup are assumed to be normally distributed. That assumption may not be tenable. This investigation compares the economic design of x-bar control charts for non normal data under Weibull shock models with various sampling avenues.  相似文献   

7.
In this paper, a multivariate Bayesian variable sampling interval (VSI) control chart for the economic design and optimization of statistical parameters is designed. Based on the VSI sampling strategy of a multivariate Bayesian control chart with dual control limits, the optimal expected cost function is constructed. The proposed model allows the determination of the scheme parameters that minimize the expected cost per time of the process. The effectiveness of the Bayesian VSI chart is estimated through economic comparisons with the Bayesian fixed sampling interval and the Hotelling's T2 chart. This study is an in-depth study on a Bayesian multivariate control chart with variable parameter. Furthermore, it is shown that significant cost improvement may be realized through the new model.  相似文献   

8.
The Hotelling's T 2 control chart, a direct analogue of the univariate Shewhart chart, is perhaps the most commonly used tool in industry for simultaneous monitoring of several quality characteristics. Recent studies have shown that using variable sampling size (VSS) schemes results in charts with more statistical power when detecting small to moderate shifts in the process mean vector. In this paper, we build a cost model of a VSS T 2 control chart for the economic and economic statistical design using the general model of Lorenzen and Vance [The economic design of control charts: A unified approach, Technometrics 28 (1986), pp. 3–11]. We optimize this model using a genetic algorithm approach. We also study the effects of the costs and operating parameters on the VSS T 2 parameters, and show, through an example, the advantage of economic design over statistical design for VSS T 2 charts, and measure the economic advantage of VSS sampling versus fixed sample size sampling.  相似文献   

9.
In this paper, we are concerned with pure statistical Shewhart control charts for the scale parameter of the three-parameter Weibull control variable, where, and are the location, the scale and the shape parameters, respectively, with fixed (FSI) and variable (VSI) sampling intervals. The parameters and are assumed to be known. We consider two-sided, and lower and upper one-sided Shewhart control charts and their FSI and VSI versions . They jointly control the mean and the variance of the Weibull control variable X. The pivotal statistic of those control charts is the maximum-likelihood estimator of for the Nth random sample XN=(X1N,X2N,...,XnN) of the Weibull control variable X. The design and performance of these control charts are studied. Two criteria, i.e. 'comparability criterion' (or 'matched criterion') under control and 'primordial criterion', are imposed on their design. The performance of these control charts is measured using the function average time to signal. For the VSI versions, the constant which defines the partition of the 'continuation region' is obtained through the 'comparability criterion' under control. The monotonic behaviour of the function average time to signal in terms of the parameters (magnitude of the shift suff ered by the target value 0), and is studied. We show that the function average time to signal of all the control charts studied in this paper does not depend on the value of the parameter or on 0, and, under control, does not depend on the parameter, when Delta (the probability of a false alarm) and n (sample size) are fixed. All control charts satisfy the 'primordial criterion' and, for fixed, on average, they all (except the two-sided VSI, for which we were not able to ascertain proof) are quicker in detecting the shift as increases. We conjecture - and we are not contradicted by the numerical example considered - that the same is true for the two-sided VSI control chart. We prove that, under the average time to signal criterion, the VSI versions are always preferable to their FSI versions. In the case of one-sided control charts, under the 'comparability criterion', the VSI version is always preferable to the FSI version, and this advantage increases with and the extent of the shift. Our one-sided control charts perform better and have more powerful statistical properties than does our two-sided control chart. The numerical example where n=5,0=1,=0.5, 1.0, 2.0, and Delta=1/370.4 is presented for the two-sided, and the lower and upper one-sided control charts. These numerical results are presented in tables and in figures. The joint influence of the parameters and in the function average time to signal is illustrated.  相似文献   

10.
Among innovations and improvements that occurred in the past two decades on the techniques and tools used for statistical process control (SPC), adaptive control charts have shown to substantially improve the statistical and/or economical performances. Variable sampling intervals (VSI) control charts are one of the most applied types of the adaptive control charts and have shown to be faster than traditional Shewhart control charts in identifying small changes of concerned quality characteristics. While in the designing procedure of the VSI control charts the data or measurements are assumed independent normal observations, in real situations the validity of these assumptions is under question in many processes. This article develops an economic-statistical design of a VSI X-bar control chart under non-normality and correlation. Since the proposed design consists of a complex nonlinear cost model that cannot be solved using a classical optimization method, a genetic algorithm (GA) is employed to solve it. Moreover, to improve the performances, response surface methodology (RSM) is employed to calibrate GA parameters. The solution procedure, efficiency, and sensitivity analysis of the proposed design are demonstrated through a numerical illustration at the end.  相似文献   

11.
The paper establishes the analytical grounds of the uniform superiority of a variable sampling interval (VSI) Shewhart control chart over the conventional fixed sampling interval (FSI) control chart, with respect to the zero-time performance, for a wide class of process distributions. We provide a sufficient condition on the distribution of a control chart statistic, and propose a criterion to determine the control limits and the regions in the in-control area of the VSI chart, corresponding to the different sampling intervals used by it. The condition and the criterion together ensure the uniform zero-time superiority of the VSI chart over the matched FSI chart, in detecting a process shift of any magnitude. It is shown that normal, Student's t and Laplace distributions satisfy the sufficient condition. In addition, chi-square, F and beta distributions satisfy it, provided that these are not extremely skewed. Further, it is illustrated that the superiority of the VSI feature is not trivial and cannot be assured if the sufficient condition is not satisfied or the control limits and the regions are not determined according to the proposed criterion. An application of the result to confirm the superiority of the VSI feature is demonstrated for the control chart for individual observations used to monitor a milk-pouch filling process.  相似文献   

12.
郭宝才  苏为华 《统计研究》2008,25(6):97-101
本文研究了两个系统因素下过程控制中样本容量和抽样区间的联合动态均值图(VSSI),并利用马氏链方法研究了动态均值图的性质。结果表明:VSSI图比VSS图,VSI图及FSSI图能更快地发现过程均值的漂移,因此,VSSI图对于快速检测遭受不同类型系统因素的过程更加有效,且对均值的敏感性增加,最后给出了联合动态均值图在生产中的一个应用实例。  相似文献   

13.
In this paper the economic design of Cumulative Count of Conforming (CCC) control charts to maintain the current control of fraction nonconforming of a process is studied. CCC chart is an attribute chart for monitoring high quality processes by plotting the cumulative count of conforming items between two nonconforming ones on a suitable chart. A process model is proposed to obtain an appropriate loss function. An alogorithm to search for the optimal setting of the sampling and control parameters is derived. Numerical illustrations of the method and some properties of the optimal economic design are provided.  相似文献   

14.
A variable sampling interval (VSI) feature is introduced to the multivariate synthetic generalized sample variance |S| control chart. This multivariate synthetic control chart is a combination of the |S| sub-chart and the conforming run length sub-chart. The VSI feature enhances the performance of the multivariate synthetic control chart. The comparative results show that the VSI multivariate synthetic control chart performs better than other types of multivariate control charts for detecting shifts in the covariance matrix of a multivariate normally distributed process. An example is given to illustrate the operation of the VSI multivariate synthetic chart.  相似文献   

15.
A control chart for monitoring process variation by using multiple dependent state (MDS) sampling is constructed in the present article. The operational formulas for in-control and out-of-control average run lengths (ARLs) are derived. Control constants are established by considering the target in-control ARL at a normal process. The extensive ARL tables are reported for various parameters and shifted values of process parameters. The performance of the proposed control chart has been evaluated with several existing charts in regard of ARLs, which empowered the presented chart and proved far better for timely detection of assignable causes. The application of the proposed concept is illustrated with a real-life industrial example and a simulation-based study to elaborate strength of the proposed chart over the existing concepts.  相似文献   

16.
17.
The paper proposes the variables sampling interval (VSI) scheme to monitor the means and the variances in two dependent process steps. The performance of the considered VSI control charts is measured by the adjusted average time to signal derived by a Markov chain approach. An example of the process control for the metallic film thickness of the computer connectors system shows the application and performance of the proposed VSI control charts in detecting shifts. Furthermore, the performance of the VSI control charts and the fixed sampling interval control charts are compared via the numerical analysis results. These demonstrate that the former is much faster in detecting shifts. Whenever quality engineers cannot specify the values of variable sampling intervals, the optimal VSI control charts are recommended. Furthermore, the impacts of misusing Shewhart charts to monitoring the process mean and variance in the second process step are also investigated.  相似文献   

18.
Recent studies have shown that using variable sampling size and control limits (VSSC) schemes result in charts with more statistical power than variable sampling size (VSS) when detecting small to moderate shifts in the process mean vector. This paper presents an economic-statistical design (ESD) of the VSSC T2 control chart using the general model of Lorenzen and Vance [22]. The genetic algorithm approach is then employed to search for the optimal values of the six test parameters of the chart. We then compare the expected cost per unit of time of the optimally designed VSSC chart with optimally designed VSS and FRS (fixed ratio sampling) T2 charts as well as MEWMA charts.  相似文献   

19.
Recent studies have shown that the adaptive T2 chart with two different sampling interval and three sample sizes (SVSSI) shows a good performance in detecting small to large shifts in the process mean. This paper investigates the economic and economic statistical designs of the SVSSI T2 charts. We use the Markov chain approach to developing the cost model proposed by Costa and Rahim (Journal of applied statistics 2001; 28: 875–885). A genetic algorithm approach is used to find the optimal solutions. Using numerical examples, we illustrate the performance of the proposed model and compare the statistical, economic, and economic statistical designs of the SVSSI T2 chart with respect to the economic and statistical criteria. Furthermore, we compare the performance of the SVSSI T2 chart with the other T2 control schemes.  相似文献   

20.
The economic and statistical merits of a multiple variable sampling intervals scheme are studied. The problem is formulated as a double-objective optimization problem with the adjusted average time to signal as the statistical objective and the expected cost per hour as the economic objective. Bai and Lee's [An economic design of variable sampling interval ¯X control charts. Int J Prod Econ. 1998;54:57–64] economic model is considered. Then we find the Pareto-optimal designs in which the two objectives are minimized simultaneously by using the non-dominated sorting genetic algorithm. Through an illustrative example, the advantages of the proposed approach are shown by providing a list of viable optimal solutions and graphical representations, which indicate the advantage of flexibility and adaptability of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号