首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative merits of ten estimators for the variance component of the balanced and unbalanced one-way random effects models are compared. Six of the estimators are nonnegative, two of which are obtained by modifying the Minimum Variance Quadratic Unbiased Estimator (MIVQUE) and the Weighted Least Square Estimator (WLS), and two more from the positive parts of these estimators. The Minimum Norm Quadratic Estimator (MINQE), which is nonnegative, is adjusted for reducing its bias. The nonnegative Minimum Mean Square Error Estimator (MIMSQE), the Analysis of Variance (ANOVA) and Unweighted Sums of Squares (USS) estimator are also included.  相似文献   

2.
We propose a class of estimators of the variance of the systematic sample mean, which is unbiased under the assumption that the population follows a superpopulation model that satisfies some mild conditions. The approach is based on the separate estimation of the portion of the variance due to the systematic component of the model and that due to the stochastic component. In particular, we deal with two estimators belonging to the proposed class that are based on moving averages and local polynomials to estimate the systematic component of the model. The latter estimators are unbiased under the assumption that the population follows a linear trend and the errors are homoscedastic and uncorrelated. Through a simulation study we show that these estimators generally outperform, in terms of bias and mean square error, the usual estimator based on the first differences also when the superpopulation model departs significantly from linearity and the errors are heteroscedastic.  相似文献   

3.
We consider a replicated ultrastructural measurement error regression model where predictor variables are observed with error. It is assumed that some prior information regarding the regression coefficients is available in the form of exact linear restrictions. Three classes of estimators of regression coefficients are proposed. These estimators are shown to be consistent as well as satisfying the given restrictions. The asymptotic properties of unrestricted as well as restricted estimators are studied without imposing any distributional assumption on any random component of the model. A Monte Carlo simulations study is performed to assess the effect of sample size, replicates and non-normality on the estimators.  相似文献   

4.
We study a semivarying coefficient model where the regressors are generated by the multivariate unit root I(1) processes. The influence of the explanatory vectors on the response variable satisfies the semiparametric partially linear structure with the nonlinear component being functional coefficients. A semiparametric estimation methodology with the first-stage local polynomial smoothing is applied to estimate both the constant coefficients in the linear component and the functional coefficients in the nonlinear component. The asymptotic distribution theory for the proposed semiparametric estimators is established under some mild conditions, from which both the parametric and nonparametric estimators are shown to enjoy the well-known super-consistency property. Furthermore, a simulation study is conducted to investigate the finite sample performance of the developed methodology and results.  相似文献   

5.
In this paper, we study a nonparametric additive regression model suitable for a wide range of time series applications. Our model includes a periodic component, a deterministic time trend, various component functions of stochastic explanatory variables, and an AR(p) error process that accounts for serial correlation in the regression error. We propose an estimation procedure for the nonparametric component functions and the parameters of the error process based on smooth backfitting and quasimaximum likelihood methods. Our theory establishes convergence rates and the asymptotic normality of our estimators. Moreover, we are able to derive an oracle‐type result for the estimators of the AR parameters: Under fairly mild conditions, the limiting distribution of our parameter estimators is the same as when the nonparametric component functions are known. Finally, we illustrate our estimation procedure by applying it to a sample of climate and ozone data collected on the Antarctic Peninsula.  相似文献   

6.
We investigate the estimators of parameters of interest for a single-index varying-coefficient model. To estimate the unknown parameter efficiently, we first estimate the nonparametric component using local linear smoothing, then construct an estimator of parametric component by using estimating equations. Our estimator for the parametric component is asymptotically efficient, and the estimator of nonparametric component has asymptotic normality and optimal uniform convergence rate. Our results provide ways to construct confidence regions for the involved unknown parameters. The finite-sample behavior of the new estimators is evaluated through simulation studies, and applications to two real data are illustrated.  相似文献   

7.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

8.
We explore a class of vector smoothers based on local polynomial regression for fitting nonparametric regression models which have a vector response. The asymptotic bias and variance for the class of estimators are derived for two different ways of representing the variance matrices within both a seemingly unrelated regression and a vector measurement error framework. We show that the asymptotic behaviour of the estimators is different in these four cases. In addition, the placement of the kernel weights in weighted least squares estimators is very important in the seeming unrelated regressions problem (to ensure that the estimator is asymptotically unbiased) but not in the vector measurement error model. It is shown that the component estimators are asymptotically uncorrelated in the seemingly unrelated regressions model but asymptotically correlated in the vector measurement error model. These new and interesting results extend our understanding of the problem of smoothing dependent data.  相似文献   

9.
The estimation problem for varying coefficient models has been studied by many authors. We consider the problem in the case that the unknown functions admit different degrees of smoothness. In this paper we propose a reducing component local polynomial method to estimate the unknown functions. It is shown that all of our estimators achieve the optimal convergence rates. The asymptotic distributions of our estimators are also derived. The established asymptotic results and the simulation results show that our estimators outperform the the existing two-step estimators when the coefficient functions admit different degrees of smoothness. We also develop methods to speed up the estimation of the model and the selection of the bandwidths.  相似文献   

10.
This work is devoted to robust principal component analysis (PCA). We give a comparison between some multivariate estimators of location and scatter by computing the influence functions of the sensitivity coefficient ρ corresponding to these estimators, and the mean squared error (MSE) of estimators of ρ. The coefficient ρ measures the closeness between the subspaces spanned by the initial eigenvectors and their corresponding version derived from an infinitesimal perturbation of the data distribution.  相似文献   

11.
J. Kleffe 《Statistics》2013,47(2):233-250
The subject of this contribution is to present a survey on new methods for variance component estimation, which appeared in the literature in recent years. Starting from mixed models treated in analysis of variance research work on this field turned over to a more general approach in which the covariance matrix of the vector of observations is assumed to be a unknown linear combination of known symmetric matrices. Much interest has been shown in developing some kinds op optimal estimators for the unknown parameters and most results were obtained for estimators being invariant with respect to a certain group of translations. Therefore we restrict attention to this class of estimates. We will deal with minimum variance unbiased estimators, least squared errors estimators, maximum likelihood estimators. Bayes quadratic estimators and show some relations to the mimimum norm quadratic unbiased estimation principle (MINQUE) introduced by C. R. Rao [20]. We do not mention the original motivation of MINQUE since the otion of minimum norm depends on a measure that is not accepted by all statisticians. Also we do‘nt deal with other approaches like the BAYEsian and fiducial methods which were successfully applied by S. Portnoy [18], P. Rusolph [22], G. C. Tiao, W. Y. Tan [28], M. J. K. Healy [9] and others, although in very special situations, only. Additionally we add some new results and also new insight in the properties of known estimators. We give a new characterization of MINQUE in the class of all estimators, extend explicite expressions for locally optimal quadratic estimators given by C. R. Rao [22] to a slightly more general situation and prove complete class theorems useful for the computation of BAYES quadratic estimators. We also investigate situations in which BAYES quadratic unbiased estimators do'nt change if the distribution of the error terms differ from the normal distribution.  相似文献   

12.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

13.
Simultaneous estimation of parameters with p (≥ 2) components, where each component has a generalized life distribution, is considered under a sum of squared error loss function. Improved estimators are obtained which dominate the maximum likelihood and the niinimum mean square estimators. Robustness of the improved estimators is shown even when the component distributions are dependent. The result is extended to the estimation of the system reliability when the components are connected in series. Several numerical studies are performed to demonstrate the risk improvement and the Pitman closeness of the new estimators.  相似文献   

14.
Estimation of the regression error variance after a preliminary test of an inequality constraint on the coefficient vector is considered. We derive the exact finite sample risk of several inequality restricted and pre-test estimators of σ2. These estimators are associated with the maximum likelihood, least squares and minimum mean squared error component estimators. Optimal critical values for the pre-test according to a mini-max regret criterion are numerically calculated. Furthermore, we examine the robustness of the optimal choice of critical values and the risk properties of the estimators of σ2 to model mis-specification through the exclusion of relevant regressors.  相似文献   

15.
Equivariant point estimators of one component of a bivariate normal mean vector are considered when the second component is known. Equivariant point estimators are characterized and compared in terms of their risk functions with respect to a normalized squared-error loss function. Specific point estimators that dominate the usual estimator when the squared correlation coefficient is sufficiently large are provided.  相似文献   

16.
This article is concerned with the estimating problem of heteroscedastic partially linear errors-in-variables models. We derive the asymptotic normality for estimators of the slope parameter and the nonparametric component in the case of known error variance with stationary $\alpha $ -mixing random errors. Also, when the error variance is unknown, the asymptotic normality for the estimators of the slope parameter and the nonparametric component as well as variance function is considered under independent assumptions. Finite sample behavior of the estimators is investigated via simulations too.  相似文献   

17.
Abstract. In this paper, two non‐parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel‐based approaches. The second estimator involves sequential fitting by univariate local polynomial quantile regressions for each additive component with the other additive components replaced by the corresponding estimates from the first estimator. The purpose of the extra local averaging is to reduce the variance of the first estimator. We show that the second estimator achieves oracle efficiency in the sense that each estimated additive component has the same variance as in the case when all other additive components were known. Asymptotic properties are derived for both estimators under dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative empirical application of additive quantile models to ambulance travel times.  相似文献   

18.
Biased regression estimators have traditionally benn studied using the Mean Square Error (MSE) criterion. Usually these comparisons have been based on the sum of the MSE's of each of the individual parameters, i.e., a scaler valued measure that is the trace of the MSE matrix. However, since this summed MSE does not consider the covariance structure of the estimators, we propose the use of a Pitman Measure of Closeness (PMC) criterion (Keating and Gupta, 1984; Keating and Mason, 1985). In this paper we consider two versions of PMC. One of these compares the estimates and the other compares the resultant predicted values for 12 different regression estimators. These estimators represent three classes of estimators, namely, ridge, shrunken, and principal component estimators. The comparisons of these estimators using the PMC criteria are contrasted with the usual MSE criteria as well as the prediction mean square error. Included in the estimators is a relatively new estimator termed the generalized principal component estimator proposed by Jolliffe. This estimator has previously received little attention in the literature.  相似文献   

19.
In this paper, we discuss the problem of estimating reliability (R) of a component based on maximum likelihood estimators (MLEs). The reliability of a component is given byR=P[Y<X]. Here X is a random strength of a component subjected to a random stress(Y) and (X,Y) follow a bivariate pareto(BVP) distribution. We obtain an asymptotic normal(AN) distribution of MLE of the reliability(R).  相似文献   

20.
Abstract

Semi-functional linear regression models are important in practice. In this paper, their estimation is discussed when function-valued and real-valued random variables are all measured with additive error. By means of functional principal component analysis and kernel smoothing techniques, the estimators of the slope function and the non parametric component are obtained. To account for errors in variables, deconvolution is involved in the construction of a new class of kernel estimators. The convergence rates of the estimators of the unknown slope function and non parametric component are established under suitable norm and conditions. Simulation studies are conducted to illustrate the finite sample performance of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号