共查询到20条相似文献,搜索用时 15 毫秒
1.
Marco Barnabani 《统计学通讯:模拟与计算》2017,46(1):331-343
In general, the exact distribution of a convolution of independent gamma random variables is quite complicated and does not admit a closed form. Of all the distributions proposed, the gamma-series representation of Moschopoulos (1985) is relatively simple to implement but for particular combinations of scale and/or shape parameters the computation of the weights of the series can result in complications with too much time consuming to allow a large-scale application. Recently, a compact random parameter representation of the convolution has been proposed by Vellaisamy and Upadhye (2009) and it allows to give an exact interpretation to the weights of the series. They describe an infinite discrete probability distribution. This result suggested to approximate Moschopoulos’s expression looking for an approximating theoretical discrete distribution for the weights of the series. More precisely, we propose a general negative binomial distribution. The result is an “excellent” approximation, fast and simple to implement for any parameter combination. 相似文献
2.
The average likelihood, defined as the integral of the like-lihood function over the parameter space, has been used as a criterion for model selection The form of the average likelihood considered uses a uniform prior. An approximation is presented based on fiducial distributions. The sampling distributions of the average likelihood and its fiducial approximation are derived for cases of sampling from one parameter members of the general-ized gamma distributions. 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(18):3708-3715
It is the aim of this note to point out that the double gamma difference distribution recently introduced by [Augustyniak M, and Doray, LG. Inference for a leptokurtic symmetric family of distributions represented by the difference of two gamma variables. J Statist Comput Simul. 2012;82:1621–1634] is well known in financial econometrics: it is the symmetric variance gamma family of distributions. We trace back to the various origins of this distribution. In addition, we consider in some detail the difference of two independent gamma distributed random variables with different shape parameters. 相似文献
4.
AbstractThis article presents a general method of inference of the parameters of a continuous distribution with two unknown parameters. Except in a few distributions such as the normal distribution, the classical approach fails in this context to provide accurate inferences with small samples.Therefore, by taking the generalized approach to inference (cf. Weerahandi, 1995), in this article we present a general method of inference to tackle practically useful two-parameter distributions such as the gamma distribution as well as distributions of theoretical interest such as the two-parameter uniform distribution. The proposed methods are exact in the sense that they are based on exact probability statements and exact expected values. The advantage of taking the generalized approach over the classical approximate inferences is shown via simulation studies.This article has the potential to motivate much needed further research in non normal regressions, multiparameter problems, and multivariate problems for which basically there are only large sample inferences available. The approach that we take should pave the way for researchers to solve a variety of non normal problems, including ANOVA and MANOVA problems, where even the Bayesian approach fails. In the context of testing of hypotheses, the proposed method provides a superior alternative to the classical generalized likelihood ratio method. 相似文献
5.
M.E. Ghitany 《统计学通讯:理论与方法》2013,42(1):223-233
In this paper, we investigate a generalized gamma distribution recentIy developed by Agarwal and Kalla (1996). Also, we show that such generalized distribution, like the ordinary gamma distribution, has a unique mode and, unlike the ordinary gamma distribution, may have a hazard rate (mean residual life) function which is upside-down bathtub (bathtub) shaped. 相似文献
6.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data) the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this article, we introduce the gamma correlated frailty models with two different baseline distributions namely, the generalized log logistic, and the generalized Weibull. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. Also we apply these models to a real life bivariate survival dataset related to the kidney infection data and a better model is suggested for the data. 相似文献
7.
For the first time, a new five-parameter distribution, called the beta generalized gamma distribution, is introduced and studied. It contains at least 25 special sub-models such as the beta gamma, beta Weibull, beta exponential, generalized gamma (GG), Weibull and gamma distributions and thus could be a better model for analysing positive skewed data. The new density function can be expressed as a linear combination of GG densities. We derive explicit expressions for moments, generating function and other statistical measures. The elements of the expected information matrix are provided. The usefulness of the new model is illustrated by means of a real data set. 相似文献
8.
In this paper, a new type of bivariate generalized gamma (BGG) distribution derived from the bivariate gamma distribution of Kibble [Two-variate gamma-type distribution. Sankh?a 1941;5:137–150] by means of a power transformation is presented. The explicit expressions of statistical properties of the BGG distribution are presented. The estimation of marginal and dependence parameters using the method of moments and the method of inference functions for margins are discussed, and their performance through a Monte Carlo simulation study is assessed. Finally, an example is given to illustrate the applicability of the distributions introduced here. 相似文献
9.
Consider two parallel systems with their independent components’ lifetimes following heterogeneous exponentiated generalized gamma distributions, where the heterogeneity is in both shape and scale parameters. We then obtain the usual stochastic (reversed hazard rate) order between the lifetimes of two systems by using the weak submajorization order between the vectors of shape parameters and the p-larger (weak supermajorization) order between the vectors of scale parameters, under some restrictions on the involved parameters. Further, by reducing the heterogeneity of parameters in each system, the usual stochastic (reversed hazard rate) order mentioned above is strengthened to the hazard rate (likelihood ratio) order. Finally, two characterization results concerning the comparisons of two parallel systems, one with independent heterogeneous generalized exponential components and another with independent homogeneous generalized exponential components, are derived. These characterization results enable us to find some lower and upper bounds for the hazard rate and reversed hazard rate functions of a parallel system consisting of independent heterogeneous generalized exponential components. The results established here generalize some of the known results in the literature, concerning the comparisons of parallel systems under generalized exponential and exponentiated Weibull models. 相似文献
10.
Bradley M. Bell 《统计学通讯:理论与方法》2013,42(2):507-517
The generalized gamma distribution includes the exponential distribution, the gamma distribution, and the Weibull distribution as special cases. It also includes the log-normal distribution in the limit as one of its parameters goes to infinity. Prentice (1974) developed an estimation method that is effective even when the underlying distribution is nearly log-normal. He reparameterized the density function so that it achieved the limiting case in a smooth fashion relative to the new parameters. He also gave formulas for the second partial derivatives of the log-density function to be used in the nearly log-normal case. His formulas included infinite summations, and he did not estimate the error in approximating these summations. We derive approximations for the log-density function and moments of the generalized gamma distribution that are smooth in the nearly log-normal case and involve only finite summations. Absolute error bounds for these approximations are included. The approximation for the first moment is applied to the problem of estimating the parameters of a generalized gamma distribution under the constraint that the distribution have mean one. This enables the development of a correspondence between the parameters in a mean one generalized gamma distribution and certain parameters in acoustic scattering theory. 相似文献
11.
The expressions for moments of order statistics from the generalized gamma distribution are derived. Coefficients to get the BLUEs of location and scale parameters in the generalized gamma distribution are computed. Some simple alternative linear unbiased estimates of location and scale parameters are also proposed and their relative efficiencies compared to the BLUEs are studied. 相似文献
12.
This paper has two parts. In the first part some results for generalized gamma convolutions (GGCs) are reviewed. A GGC is a limit distribution for sums of independent gamma variables. In the second part, bivariate gamma distributions and bivariate GGCs are considered. New bivariate gamma distributions are derived from shot-noise models. The remarkable property hyperbolic complete monotonicity (HCM) for a function is considered both in the univariate case and in the bivariate case. 相似文献
13.
In this paper three near-exact distributions are developed for the sphericity test statistic. The exact probability density function of this statistic is usually represented through the use of the Meijer G function, which renders the computation of quantiles impossible even for a moderately large number of variables. The main purpose of this paper is to obtain near-exact distributions that lie closer to the exact distribution than the asymptotic distributions while, at the same time, correspond to density and cumulative distribution functions practical to use, allowing for an easy determination of quantiles. In addition to this, two asymptotic distributions that lie closer to the exact distribution than the existing ones were developed. Two measures are considered to evaluate the proximity between the exact and the asymptotic and near-exact distributions developed. As a reference we use the saddlepoint approximations developed by Butler et al. [1993. Saddlepoint approximations for tests of block independence, sphericity and equal variances and covariances. J. Roy. Statist. Soc., Ser. B 55, 171–183] as well as the asymptotic distribution proposed by Box. 相似文献
14.
《Journal of Statistical Computation and Simulation》2012,82(8):1169-1189
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data. 相似文献
15.
Pedro L. Ramos Jorge A. Achcar Fernando A. Moala Eduardo Ramos Francisco Louzada 《Statistics》2017,51(4):824-843
The Generalized gamma (GG) distribution plays an important role in statistical analysis. For this distribution, we derive non-informative priors using formal rules, such as Jeffreys prior, maximal data information prior and reference priors. We have shown that these most popular formal rules with natural ordering of parameters, lead to priors with improper posteriors. This problem is overcome by considering a prior averaging approach discussed in Berger et al. [Overall objective priors. Bayesian Analysis. 2015;10(1):189–221]. The obtained hybrid Jeffreys-reference prior is invariant under one-to-one transformations and yields a proper posterior distribution. We obtained good frequentist properties of the proposed prior using a detailed simulation study. Finally, an analysis of the maximum annual discharge of the river Rhine at Lobith is presented. 相似文献
16.
In this article the authors show how by adequately decomposing the null hypothesis of the multi-sample block-scalar sphericity test it is possible to obtain the likelihood ratio test statistic as well as a different look over its exact distribution. This enables the construction of well-performing near-exact approximations for the distribution of the test statistic, whose exact distribution is quite elaborate and non-manageable. The near-exact distributions obtained are manageable and perform much better than the available asymptotic distributions, even for small sample sizes, and they show a good asymptotic behavior for increasing sample sizes as well as for increasing number of variables and/or populations involved. 相似文献
17.
ABSTRACTIn this paper, we propose two new simple estimation methods for the two-parameter gamma distribution. The first one is a modified version of the method of moments, whereas the second one makes use of some key properties of the distribution. We then derive the asymptotic distributions of these estimators. Also, bias-reduction methods are suggested to reduce the bias of these estimators. The performance of the estimators are evaluated through a Monte Carlo simulation study. The probability coverages of confidence intervals are also discussed. Finally, two examples are used to illustrate the proposed methods. 相似文献
18.
ABSTRACTThe gamma distribution has been widely used in many research areas such as engineering and survival analysis. We present an extension of this distribution, called the Kummer beta gamma distribution, having greater flexibility to model scenarios involving skewed data. We derive analytical expressions for some mathematical quantities. The estimation of parameters is approached by the maximum likelihood method and Bayesian analysis. The likelihood ratio and formal goodness-of-fit tests are used to compare the presented distribution with some of its sub-models and non nested models. A real data set is used to illustrate the importance of the distribution. 相似文献
19.
The generalized Rayleigh distribution was introduced and studied quite effectively in the literature. The closeness and separation between the distributions are extremely important for analyzing any lifetime data. In this spirit, both the generalized Rayleigh and Weibull distributions can be used for analyzing skewed datasets. In this article, we compare these two distributions based on the Fisher information measures and use it for discrimination purposes. It is evident that the Fisher information measures play an important role in separating between the distributions. The total information measures and the variances of the different percentile estimators are computed and presented. A real life dataset is analyzed for illustration purposes and a numerical comparison study is performed to assess our procedures in separating between these two distributions. 相似文献
20.
M. E. Mead 《统计学通讯:理论与方法》2013,42(7):1426-1435
In this article, we introduce a new reliability model of inverse gamma distribution referred to as the generalized inverse gamma distribution (GIG). A generalization of inverse gamma distribution is defined based on the exact form of generalized gamma function of Kobayashi (1991). This function is useful in many problems of diffraction theory and corrosion problems in new machines. The new distribution has a number of lifetime special sub-models. For this model, some of its statistical properties are studied. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is derived. We also demonstrate the usefulness of this distribution on a real data set. 相似文献