首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In many areas of medical research, especially in studies that involve paired organs, a bivariate ordered categorical response should be analyzed. Using a bivariate continuous distribution as the latent variable is an interesting strategy for analyzing these data sets. In this context, the bivariate standard normal distribution, which leads to the bivariate cumulative probit regression model, is the most common choice. In this paper, we introduce another latent variable regression model for modeling bivariate ordered categorical responses. This model may be an appropriate alternative for the bivariate cumulative probit regression model, when postulating a symmetric form for marginal or joint distribution of response data does not appear to be a valid assumption. We also develop the necessary numerical procedure to obtain the maximum likelihood estimates of the model parameters. To illustrate the proposed model, we analyze data from an epidemiologic study to identify some of the most important risk indicators of periodontal disease among students 15-19 years in Tehran, Iran.  相似文献   

2.
Recently, Lee and Cha proposed two general classes of discrete bivariate distributions. They have discussed some general properties and some specific cases of their proposed distributions. In this paper we have considered one model, namely bivariate discrete Weibull distribution, which has not been considered in the literature yet. The proposed bivariate discrete Weibull distribution is a discrete analogue of the Marshall–Olkin bivariate Weibull distribution. We study various properties of the proposed distribution and discuss its interesting physical interpretations. The proposed model has four parameters, and because of that it is a very flexible distribution. The maximum likelihood estimators of the parameters cannot be obtained in closed forms, and we have proposed a very efficient nested EM algorithm which works quite well for discrete data. We have also proposed augmented Gibbs sampling procedure to compute Bayes estimates of the unknown parameters based on a very flexible set of priors. Two data sets have been analyzed to show how the proposed model and the method work in practice. We will see that the performances are quite satisfactory. Finally, we conclude the paper.  相似文献   

3.
This paper introduces the Dogit ordered generalized extreme value (DOGEV) model, for handling discrete variables that are ordered and heterogeneous. In particular, the DOGEV model can be applied to questionnaire responses on questions allowing a discrete set of ordered possible responses, where there is a preference for particular responses and possibly multiple modes in the data. The DOGEV model combines a model for choice set generation with the ordered generalized extreme value model. The paper illustrates the model using two empirical examples: a model of inflationary expectations and a model for students' evaluations of teaching.  相似文献   

4.
Vahid Nekoukhou 《Statistics》2017,51(5):1143-1158
In this paper, we develop a bivariate discrete generalized exponential distribution, whose marginals are discrete generalized exponential distribution as proposed by Nekoukhou, Alamatsaz and Bidram [Discrete generalized exponential distribution of a second type. Statistics. 2013;47:876–887]. It is observed that the proposed bivariate distribution is a very flexible distribution and the bivariate geometric distribution can be obtained as a special case of this distribution. The proposed distribution can be seen as a natural discrete analogue of the bivariate generalized exponential distribution proposed by Kundu and Gupta [Bivariate generalized exponential distribution. J Multivariate Anal. 2009;100:581–593]. We study different properties of this distribution and explore its dependence structures. We propose a new EM algorithm to compute the maximum-likelihood estimators of the unknown parameters which can be implemented very efficiently, and discuss some inferential issues also. The analysis of one data set has been performed to show the effectiveness of the proposed model. Finally, we propose some open problems and conclude the paper.  相似文献   

5.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models.  相似文献   

6.
It is well known that M-estimation is a widely used method for robust statistical inference and the varying coefficient models have been widely applied in many scientific areas. In this paper, we consider M-estimation and model identification of bivariate varying coefficient models for longitudinal data. We make use of bivariate tensor-product B-splines as an approximation of the function and consider M-type regression splines by minimizing the objective convex function. Mean and median regressions are included in this class. Moreover, with a double smoothly clipped absolute deviation (SCAD) penalization, we study the problem of simultaneous structure identification and estimation. Under approximate conditions, we show that the proposed procedure possesses the oracle property in the sense that it is as efficient as the estimator when the true model is known prior to statistical analysis. Simulation studies are carried out to demonstrate the methodological power of the proposed methods with finite samples. The proposed methodology is illustrated with an analysis of a real data example.  相似文献   

7.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

8.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

9.
ABSTRACT

We present methods for modeling and estimation of a concurrent functional regression when the predictors and responses are two-dimensional functional datasets. The implementations use spline basis functions and model fitting is based on smoothing penalties and mixed model estimation. The proposed methods are implemented in available statistical software, allow the construction of confidence intervals for the bivariate model parameters, and can be applied to completely or sparsely sampled responses. Methods are tested to data in simulations and they show favorable results in practice. The usefulness of the methods is illustrated in an application to environmental data.  相似文献   

10.
In this paper, we introduce classical and Bayesian approaches for the Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data. This distribution is considered for the analysis of bivariate lifetime as an alternative to some existing bivariate lifetime distributions assuming continuous lifetimes as the Block and Basu or Marshall and Olkin bivariate distributions. Maximum likelihood and Bayesian estimators are presented. Two examples are considered to illustrate the proposed methodology: an example with simulated data and an example with medical bivariate lifetime data.  相似文献   

11.
In this article, we consider a model allowing the analysis of multivariate data, which can contain data attributes of different types (e.g., continuous, discrete, binary). This model is a two-level hierarchical model which supports a wide range of correlation structures and can accommodate overdispersed data. Maximum likelihood estimation of the model parameters is achieved with an automated Monte Carlo expectation maximization algorithm. Our method is tested in a simulation study in the bivariate case and applied to a data set dealing with beehive activity.  相似文献   

12.
In this paper, we propose to use a special class of bivariate frailty models to study dependent censored data. The proposed models are closely linked to Archimedean copula models. We give sufficient conditions for the identifiability of this type of competing risks models. The proposed conditions are derived based on a property shared by Archimedean copula models and satisfied by several well‐known bivariate frailty models. Compared with the models studied by Heckman and Honoré and Abbring and van den Berg, our models are more restrictive but can be identified with a discrete (even finite) covariate. Under our identifiability conditions, expectation–maximization (EM) algorithm provides us with consistent estimates of the unknown parameters. Simulation studies have shown that our estimation procedure works quite well. We fit a dependent censored leukaemia data set using the Clayton copula model and end our paper with some discussions. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics  相似文献   

13.
Bivariate responses of repeated measures data are usually analysed as two separate responses in the literature by several authors. The two responses usually tend to be related in some way and analysing this data jointly presents an opportunity to account for the joint movement, which may impact on the conclusions reached compared to analysing the responses separately. In this paper, a bivariate regression model with random effects (linear mixed model) is used to detect a change if any in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. The message was to increase the prescribing of one drug while simultaneously decreasing the prescribing of another. The effects of modelling a bivariate auto-regressive process are evaluated.  相似文献   

14.
In many panel studies, bivariate ordinal–nominal responses are measured and the aim is to investigate the effects of explanatory variables on these responses. A regression analysis for these types of data must allow for the correlation among responses of the same individual. To analyse such ordinal–nominal responses using a proper weighting approach, an ordinal–nominal bivariate transition model is proposed and maximum likelihood is used to find the parameter estimates. We propose a method in which the likelihood function can be partitioned to make possible the use of existing software. The approach is applied to the Labour Force Survey data in Iran, where the ordinal response, at the first period, is the duration of unemployment for unemployed people and the nominal response, in the second period, is economic activity status of these individuals. The interest is to find the reasons for staying unemployed or moving to another status of economic activity.  相似文献   

15.
Scientific experiments commonly result in clustered discrete and continuous data. Existing methods for analyzing such data include the use of quasi-likelihood procedures and generalized estimating equations to estimate marginal mean response parameters. In applications to areas such as developmental toxicity studies, where discrete and continuous measurements are recorded on each fetus, or clinical ophthalmologic trials, where different types of observations are made on each eye, the assumption that data within cluster are exchangeable is often very reasonable. We use this assumption to formulate fully parametric regression models for clusters of bivariate data with binary and continuous components. The regression models proposed have marginal interpretations and reproducible model structures. Tractable expressions for likelihood equations are derived and iterative schemes are given for computing efficient estimates (MLEs) of the marginal mean, correlations, variances and higher moments. We demonstrate the use the ‘exchangeable’ procedure with an application to a developmental toxicity study involving fetal weight and malformation data.  相似文献   

16.
The family of weighted Poisson distributions offers great flexibility in modeling discrete data due to its potential to capture over/under-dispersion by an appropriate selection of the weight function. In this paper, we introduce a flexible weighted Poisson distribution and further study its properties by using it in the context of cure rate modeling under a competing cause scenario. A special case of the new distribution is the COM-Poisson distribution which in turn encompasses the Bernoulli, Poisson, and geometric distributions; hence, many of the well-studied cure rate models may be seen as special cases of the proposed model. We focus on the estimation, through the maximum likelihood method, of the cured proportion and the properties of the failure time of the susceptibles/non cured individuals; a profile likelihood approach is also adopted for estimating the parameters of the weighted Poisson distribution. A Monte Carlo simulation study demonstrates the accuracy of the proposed inferential method. Finally, as an illustration, we fit the proposed model to a cutaneous melanoma data set.  相似文献   

17.
We study the performance of six proposed bivariate survival curve estimators on simulated right censored data. The performance of the estimators is compared for data generated by three bivariate models with exponential marginal distributions. The estimators are compared in their ability to estimate correlations and survival functions probabilities. Simulated data results are presented so that the proposed estimators in this relatively new area of analysis can be explicitly compared to the known distribution of the data and the parameters of the underlying model. The results show clear differences in the performance of the estimators.  相似文献   

18.
Association models, like frailty and copula models, are frequently used to analyze clustered survival data and evaluate within-cluster associations. The assumption of noninformative censoring is commonly applied to these models, though it may not be true in many situations. In this paper, we consider bivariate competing risk data and focus on association models specified for the bivariate cumulative incidence function (CIF), a nonparametrically identifiable quantity. Copula models are proposed which relate the bivariate CIF to its corresponding univariate CIFs, similarly to independently right censored data, and accommodate frailty models for the bivariate CIF. Two estimating equations are developed to estimate the association parameter, permitting the univariate CIFs to be estimated either parametrically or nonparametrically. Goodness-of-fit tests are presented for formally evaluating the parametric models. Both estimators perform well with moderate sample sizes in simulation studies. The practical use of the methodology is illustrated in an analysis of dementia associations.  相似文献   

19.
In this paper, we discuss the bivariate Birnbaum-Saunders accelerated lifetime model, in which we have modeled the dependence structure of bivariate survival data through the use of frailty models. Specifically, we propose the bivariate model Birnbaum-Saunders with the following frailty distributions: gamma, positive stable and logarithmic series. We present a study of inference and diagnostic analysis for the proposed model, more concisely, are proposed a diagnostic analysis based in local influence and residual analysis to assess the fit model, as well as, to detect influential observations. In this regard, we derived the normal curvatures of local influence under different perturbation schemes and we performed some simulation studies for assessing the potential of residuals to detect misspecification in the systematic component, the presence in the stochastic component of the model and to detect outliers. Finally, we apply the methodology studied to real data set from recurrence in times of infections of 38 kidney patients using a portable dialysis machine, we analyzed these data considering independence within the pairs and using the bivariate Birnbaum-Saunders accelerated lifetime model, so that we could make a comparison and verify the importance of modeling dependence within the times of infection associated with the same patient.  相似文献   

20.
Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology, where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants'' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号