首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Weibull distribution is one of the most important distributions in reliability. For the first time, we introduce the beta exponentiated Weibull distribution which extends recent models by Lee et al. [Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Statist. Meth. 6 (2007), pp. 173–186] and Barreto-Souza et al. [The beta generalized exponential distribution, J. Statist. Comput. Simul. 80 (2010), pp. 159–172]. The new distribution is an important competitive model to the Weibull, exponentiated exponential, exponentiated Weibull, beta exponential and beta Weibull distributions since it contains all these models as special cases. We demonstrate that the density of the new distribution can be expressed as a linear combination of Weibull densities. We provide the moments and two closed-form expressions for the moment-generating function. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The density of the order statistics can also be expressed as a linear combination of Weibull densities. We obtain the moments of the order statistics. The expected information matrix is derived. We define a log-beta exponentiated Weibull regression model to analyse censored data. The estimation of the parameters is approached by the method of maximum likelihood. The usefulness of the new distribution to analyse positive data is illustrated in two real data sets.  相似文献   

2.
A new five-parameter distribution called the beta Weibull-geometric (BWG) distribution is proposed. The new distribution is generated from the logit of a beta random variable and includes the Weibull-geometric distribution of Barreto-Souza et al. [The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657], beta Weibull (BW), beta exponential, exponentiated Weibull, and some other lifetime distributions as special cases. A comprehensive mathematical treatment of this distribution is provided. The density function can be expressed as an infinite mixture of BW densities and then we derive some mathematical properties of the new distribution from the corresponding properties of the BW distribution. The density function of the order statistics and also estimation of the stress–strength parameter are obtained using two general expressions. To estimate the model parameters, we use the maximum likelihood method and the asymptotic distribution of the estimators is also discussed. The capacity of the new distribution are examined by various tools, using two real data sets.  相似文献   

3.
For any continuous baseline G distribution [G.M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883–898], proposed a new generalized distribution (denoted here with the prefix ‘Kw-G’ (Kumaraswamy-G)) with two extra positive parameters. They studied some of its mathematical properties and presented special sub-models. We derive a simple representation for the Kw-G density function as a linear combination of exponentiated-G distributions. Some new distributions are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), pp. 155–161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279–285] and Kw-Flexible Weibull [M. Bebbington, C.D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007), pp. 719–726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes, moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Rényi entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the estimation of the parameters by maximum likelihood. We provide two applications to real data sets and discuss a bivariate extension of the Kw-G distribution.  相似文献   

4.
In this paper, a discrete counterpart of the general class of continuous beta-G distributions is introduced. A discrete analog of the beta generalized exponential distribution of Barreto-Souza et al. [2], as an important special case of the proposed class, is studied. This new distribution contains some previously known discrete distributions as well as two new models. The hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Some distributional and moment properties of the new distribution as well as its order statistics are discussed. Estimation of the parameters is illustrated using the maximum likelihood method and, finally, the model with a real data set is examined.  相似文献   

5.
In this paper, the researchers attempt to introduce a new generalization of the Weibull-geometric distribution. The failure rate function of the new model is found to be increasing, decreasing, upside-down bathtub, and bathtub-shaped. The researchers obtained the new model by compounding Weibull distribution and discrete generalized exponential distribution of a second type, which is a generalization of the geometric distribution. The new introduced model contains some previously known lifetime distributions as well as a new one. Some basic distributional properties and moments of the new model are discussed. Estimation of the parameters is illustrated and the model with two known real data sets is examined.  相似文献   

6.
Recently, Domma et al. [An extension of Azzalinis method, J. Comput. Appl. Math. 278 (2015), pp. 37–47] proposed an extension of Azzalini's method. This method can attract readers due to its flexibility and ease of applicability. Most of the weighted Weibull models that have been introduced are with monotonic hazard rate function. This fact limits their applicability. So, our aim is to build a new weighted Weibull distribution with monotonic and non-monotonic hazard rate function. A new weighted Weibull distribution, so-called generalized weighted Weibull (GWW) distribution, is introduced by a method exposed in Domma et al. [13]. GWW distribution possesses decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate. Also, it is very easy to derive statistical properties of the GWW distribution. Finally, we consider application of the GWW model on a real data set, providing simulation study too.  相似文献   

7.
In this paper, a generalization of inverted exponential distribution is considered as a lifetime model [A.M. Abouammoh and A.M. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Statist. Comput. Simul. 79(11) (2009), pp. 1301–1315]. Its reliability characteristics and important distributional properties are discussed. Maximum likelihood estimation of the two parameters involved along with reliability and failure rate functions are derived. The method of least square estimation of parameters is also studied here. In view of cost and time constraints, type II progressively right censored sampling scheme has been used. For illustration of the performance of the estimates, a Monte Carlo simulation study is carried out. Finally, a real data example is given to show the practical applications of the paper.  相似文献   

8.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

9.
In this paper, we give matrix formulae of order 𝒪(n ?1), where n is the sample size, for the first two moments of Pearson residuals in exponential family nonlinear regression models [G.M. Cordeiro and G.A. Paula, Improved likelihood ratio statistic for exponential family nonlinear models, Biometrika 76 (1989), pp. 93–100.]. The formulae are applicable to many regression models in common use and generalize the results by Cordeiro [G.M. Cordeiro, On Pearson's residuals in generalized linear models, Statist. Prob. Lett. 66 (2004), pp. 213–219.] and Cook and Tsai [R.D. Cook and C.L. Tsai, Residuals in nonlinear regression, Biometrika 72(1985), pp. 23–29.]. We suggest adjusted Pearson residuals for these models having, to this order, the expected value zero and variance one. We show that the adjusted Pearson residuals can be easily computed by weighted linear regressions. Some numerical results from simulations indicate that the adjusted Pearson residuals are better approximated by the standard normal distribution than the Pearson residuals.  相似文献   

10.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

11.
Lin et al. [Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring, J. Stat. Comput. Simul. 81 (2011), pp. 873–882] claimed to have derived exact Bayesian sampling plans for exponential distributions with progressive hybrid censoring. We comment on the accuracy of the design parameters of their proposed sampling plans and the associated Bayes risks given in tables of Lin et al. [Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring, J. Stat. Comput. Simul. 81 (2011), pp. 873–882]. Counter-examples to their claim are provided.  相似文献   

12.
A five-parameter extended fatigue life model called the McDonald–Birnbaum–Saunders (McBS) distribution is proposed. It extends the Birnbaum–Saunders and beta Birnbaum–Saunders [G.M. Cordeiro and A.J. Lemonte, The β-Birnbaum–Saunders distribution: An improved distribution for fatigue life modeling. Comput. Statist. Data Anal. 55 (2011), pp. 1445–1461] distributions and also the new Kumaraswamy–Birnbaum–Saunders distribution. We obtain the ordinary moments, generating function, mean deviations and quantile function. The method of maximum likelihood is used to estimate the model parameters and its potentiality is illustrated with an application to a real fatigue data set. Further, we propose a new extended regression model based on the logarithm of the McBS distribution. This model can be very useful to the analysis of real data and could give more realistic fits than other special regression models.  相似文献   

13.
Record scheme is a method to reduce the total time on test of an experiment. In this scheme, items are sequentially observed and only values smaller than all previous ones are recorded. In some situations, when the experiments are time-consuming and sometimes the items are lost during the experiment, the record scheme dominates the usual random sample scheme [M. Doostparast and N. Balakrishnan, Optimal sample size for record data and associated cost analysis for exponential distribution, J. Statist. Comput. Simul. 80(12) (2010), pp. 1389–1401]. Estimation of the mean of an exponential distribution based on record data has been treated by Samaniego and Whitaker [On estimating population characteristics from record breaking observations I. Parametric results, Naval Res. Logist. Q. 33 (1986), pp. 531–543] and Doostparast [A note on estimation based on record data, Metrika 69 (2009), pp. 69–80]. The lognormal distribution is used in a wide range of applications when the multiplicative scale is appropriate and the log-transformation removes the skew and brings about symmetry of the data distribution [N.T. Longford, Inference with the lognormal distribution, J. Statist. Plann. Inference 139 (2009), pp. 2329–2340]. In this paper, point estimates as well as confidence intervals for the unknown parameters are obtained. This will also be addressed by the Bayesian point of view. To carry out the performance of the estimators obtained, a simulation study is conducted. For illustration proposes, a real data set, due to Lawless [Statistical Models and Methods for Lifetime Data, 2nd ed., John Wiley & Sons, New York, 2003], is analysed using the procedures obtained.  相似文献   

14.
Estimation of the parameters of an exponential distribution based on record data has been treated by Samaniego and Whitaker [On estimating population characteristics from record-breaking observations, I. Parametric results, Naval Res. Logist. Q. 33 (1986), pp. 531–543] and Doostparast [A note on estimation based on record data, Metrika 69 (2009), pp. 69–80]. Recently, Doostparast and Balakrishnan [Optimal record-based statistical procedures for the two-parameter exponential distribution, J. Statist. Comput. Simul. 81(12) (2011), pp. 2003–2019] obtained optimal confidence intervals as well as uniformly most powerful tests for one- and two-sided hypotheses concerning location and scale parameters based on record data from a two-parameter exponential model. In this paper, we derive optimal statistical procedures including point and interval estimation as well as most powerful tests based on record data from a two-parameter Pareto model. For illustrative purpose, a data set on annual wages of a sample of production-line workers in a large industrial firm is analysed using the proposed procedures.  相似文献   

15.
V. Nekoukhou  H. Bidram 《Statistics》2013,47(4):876-887
In this paper, we shall attempt to introduce another discrete analogue of the generalized exponential distribution of Gupta and Kundu [Generalized exponential distributions, Aust. N. Z. J. Stat. 41(2) (1999), pp. 173–188], different to that of Nekoukhou et al. [A discrete analogue of the generalized exponential distribution, Comm. Stat. Theory Methods, to appear (2011)]. This new discrete distribution, which we shall call a discrete generalized exponential distribution of the second type (DGE2(α, p)), can be viewed as another generalization of the geometric distribution. We shall first study some basic distributional and moment properties, as well as order statistics distributions of this family of new distributions. Certain compounded DGE2(α, p) distributions are also discussed as the results of which some previous lifetime distributions such as that of Adamidis and Loukas [A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42] follow as corollaries. Then, we will investigate estimation of the parameters involved. Finally, we will examine the model with a real data set.  相似文献   

16.
In this paper, we proposed a new family of distributions namely exponentiated exponential–geometric (E2G) distribution. The E2G distribution is a straightforwardly generalization of the exponential–geometric (EG) distribution proposed by Adamidis and Loukas [A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], which accommodates increasing, decreasing and unimodal hazard functions. It arises on a latent competing risk scenarios, where the lifetime associated with a particular risk is not observable but only the minimum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its survival and hazard functions, moments, rth moment of the ith order statistic, mean residual lifetime and modal value. Maximum-likelihood inference is implemented straightforwardly. From a mis-specification simulation study performed in order to assess the extent of the mis-specification errors when testing the EG distribution against the E2G, and we observed that it is usually possible to discriminate between both distributions even for moderate samples with presence of censoring. The practical importance of the new distribution was demonstrated in three applications where we compare the E2G distribution with several lifetime distributions.  相似文献   

17.
In this paper, we consider the four-parameter bivariate generalized exponential distribution proposed by Kundu and Gupta [Bivariate generalized exponential distribution, J. Multivariate Anal. 100 (2009), pp. 581–593] and propose an expectation–maximization algorithm to find the maximum-likelihood estimators of the four parameters under random left censoring. A numerical experiment is carried out to discuss the properties of the estimators obtained iteratively.  相似文献   

18.
Recently, Sanjel and Balakrishnan [A Laguerre Polynomial Approximation for a goodness-of-fit test for exponential distribution based on progressively censored data, J. Stat. Comput. Simul. 78 (2008), pp. 503–513] proposed the use of Laguerre orthogonal polynomials for a goodness-of-fit test for the exponential distribution based on progressively censored data. In this paper, we use Jacobi and Laguerre orthogonal polynomials in order to obtain density approximants for some test statistics useful in testing for outliers in gamma and exponential samples. We first obtain the exact moments of the statistics and then the density approximants, based on these moments, are expressed in terms of Jacobi and Laguerre polynomials. A comparative study is carried out of the critical values obtained by using the proposed methods to the corresponding results given by Barnett and Lewis [Outliers in Statistical Data, 3rd ed., John Wiley & Sons, New York, 1993]. This reveals that the proposed techniques provide very accurate approximations to the distributions. Finally, we present some numerical examples to illustrate the proposed approximations. Monte Carlo simulations suggest that the proposed approximate densities are very accurate.  相似文献   

19.
In life-testing and survival analysis, sometimes the components are arranged in series or parallel system and the number of components is initially unknown. Thus, the number of components, say Z, is considered as random with an appropriate probability mass function. In this paper, we model the survival data with baseline distribution as Weibull and the distribution of Z as generalized Poisson, giving rise to four parameters in the model: increasing, decreasing, bathtub and upside bathtub failure rates. Two examples are provided and the maximum-likelihood estimation of the parameters is studied. Rao's score test is developed to compare the results with the exponential Poisson model studied by Kus [17] and the exponential-generalized Poisson distribution with baseline distribution as exponential and the distribution of Z as generalized Poisson. Simulation studies are carried out to examine the performance of the estimates.  相似文献   

20.
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号