首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

2.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

3.
This paper offers a predictive approach for the selection of a fixed number (= t) of treatments from k treatments with the goal of controlling for predictive losses. For the ith treatment, independent observations X ij (j = 1,2,…,n) can be observed where X ij ’s are normally distributed N(θ i ; σ 2). The ranked values of θ i ’s and X i ’s are θ (1) ≤ … ≤ θ (k) and X [1] ≤ … ≤ X [k] and the selected subset S = {[k], [k? 1], … , [k ? t+1]} will be considered. This paper distinguishes between two types of loss functions. A type I loss function associated with a selected subset S is the loss in utility from the selector’s view point and is a function of θ i with i ? S. A type II loss function associated with S measures the unfairness in the selection from candidates’ viewpoint and is a function of θ i with i ? S. This paper shows that under mild assumptions on the loss functions S is optimal and provides the necessary formulae for choosing n so that the two types of loss can be controlled individually or simultaneously with a high probability. Predictive bounds for the losses are provided, Numerical examples support the usefulness of the predictive approach over the design of experiment approach.  相似文献   

4.
Let X1,…,Xn be a sample from a population with continuous distribution function F(x?θ) such that F(x)+F(-x)=1 and 0<F(x)<1, x?R1. It is shown that the power- function of a monotone test of H: θ=θ0 against K: θ>θ0 cannot tend to 1 as θ?θ0 → ∞ more than n times faster than the tails of F tend to 0. Some standard as well as robust tests are considered with respect to this rate of convergence.  相似文献   

5.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

6.
Let X1, X2,… be a sequence of independent random variables with distribution functions F1, where 1 ≤ in, and for each n ≥ 1 let X1,n ≤… ≤ Xn,n denote the order statistics of the first n random variables. Under suitable hypotheses about the F1, we characterize the limit distribution functions H(x) for which P(Xk,n ? anx + bn) → H(x), where an > 0 and bn are real constants. We consider the cases where κ = κ(n) satisfies √n {κ(n)/n — λ} → 0 and √n {κ(n)/n — λ} → ∞ separately.  相似文献   

7.
The supremum of random variables representing a sequence of rewards is of interest in establishing the existence of optimal stopping rules. Necessary and sufficient conditions are given for existence of moments of supn(Xn ? cn) and supn(Sn ? cn) where X1, X2, … are i.i.d. random variables, Sn = X1 + … + Xn, and cn = (nL(n))1/r, 0 < r < 2, L = 1, L = log, and L = log log. Following Cohn (1974), “rates of convergence” results are used in the proof.  相似文献   

8.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

9.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

10.
Let Xi:j denote the ith order statistic of a random sample of size j from a continuous life distribution. We show that if Xk:n, is IFR, IFRA, NBU, or DMRL, so are Xk+1:n, Xk+1:n?1 and Xk+1:n+1. Further we show that, in the first three cases, Xk+1:n+2 also shares the corresponding property if k ≤ (n+3)/2. We also present dual results for DFR, DFRA and NWU classes.  相似文献   

11.
Abstract There are given k (≥22) independent distributions with c.d.f.'s F(x;θj) indexed by a scale parameter θj, j = 1,…, k. Let θ[i] (i = 1,…, k) denote the ith smallest one of θ1,…, θk. In this paper we wish to show that, under some regularity conditions, there does not exist an exact β-level (0≤β1) confidence interval for the ith smallest scale parameter θi based on k independent samples. Since the log transformation method may not yield the desired results for the scale parameter problem, we will treat the scale parameter case directly without transformation. Application is considered for normal variances. Two conservative one-sided confidence intervals for the ith smallest normal variance and the percentage points needed to actually apply the intervals are provided.  相似文献   

12.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

13.
{Xn, n≥1} are independent and identically distributed random variables with continuous distribution function F(x). For j=1,…,n, Xj is called a near-record up to time n if Xj ∈ (Mna, Mn], where Mn = max1≤j≤n {Xj} and a is a positive constant. Let Zn(a) denote the number of near-records after, and including the maximum observation of the sequence. In this paper, the distributional results of Zn(a) are considered and its asymptotic behaviours are studied.  相似文献   

14.
Let X1n,…,Xnn be independent random elements with an unknown change point θ∈(0,1), that is Xin has a distribution ν1 or ν2, respectively, according to i⩽[] or i>[]. We propose an estimator θn of θ, which is defined as the maximizer of a weighted empirical process on (0,1). Finding upper bounds of polynomial and exponential type for the tails of n−[], we are able to derive rates of almost sure convergence, of distributional convergence, of Lp-convergence and of convergence in the Ky-Fan- and in the Prokhorov-metric.  相似文献   

15.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

16.
Consider K(>2) independent populations π1,..,π k such that observations obtained from π k are independent and normally distributed with unknown mean µ i and unknown variance θ i i = 1,…,k. In this paper, we provide lower percentage points of Hartley's extremal quotient statistic for testing an interval hypothesisH 0 θ [k] θ [k] > δ vs. H a : θ [k] θ [1] ≤ δ , where δ ≥ 1 is a predetermined constant and θ [k](θ [1]) is the max (min) of the θi,…,θ k . The least favorable configuration (LFC) for the test under H 0 is determined in order to obtain the lower percentage points. These percentage points can also be used to construct an upper confidence bound for θ[k][1].  相似文献   

17.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

18.
A sequence {Xn, n≥1} of independent and identically distributed random variables with absolutely continuous (with respect to Lebesque measure) cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max(X1,…,Xj?1), j>1. Let {XL(n), n≥0} with L(o)=1 be the sequence of such record values and Zn,n?1=XL(n)–XL(n?1). Some properties of Zn,n?1 are studied and characterizations of the exponential distribution are discussed in terms of the expectation and the hazard rate of zn,n?1.  相似文献   

19.
Let X= (X1,…, Xk)’ be a k-variate (k ≥ 2) normal random vector with unknown population mean vector μ = (μ1 ,…, μk)’ and covariance matrix Σ of order k and let μ[1] ≤ … ≤ μ[k] be the ordered values of the μ ’ s. No prior knowledge of the pairing of the μ[i] with the Xj. (or μ[i] with the σj 2) is assumed for any i and j (1 ≤ i, j ≤ k). Based on a random sample of N independent vector observations on X, this paper considers both upper and lower (one-sided) and two-sided 100γ% (0 < γ < 1) confidence intervals for μ[k] and μ[1], the largest and the smallest mean, respectively, when Σ is known and when Σ is equal to σ2R with common unknown variance σ2 > 0 and correlation matrix R known, respectively. An optimum two-sided confidence interval via finding the shortest length from this class is also considered. Necessary tables and computer program to actually apply these procedures are provided.  相似文献   

20.
This paper deals with obtaining an upper tolerance limit for a largest observation X(n) in an ordered sample of size n from a continuous distribution where the first m observations X(1) < X(2) < … < X(m), l ≤ m < n, have been observed. A criterion of “goodness” of tolerance limit is developed, and a method is given to obtain the best tolerance limit. This method is applied to exponential and Pareto distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号