首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the ciassical regression model Yi=h(xi) + ? i, i=1,…,n, Cheng (1984) introduced linear combinations of regression quantiles as a new class of estimators for the unknown regression function h(x). The asymptotic properties studied in Cheng (1984) are reconsidered. We obtain a sharper scrong consistency rate and we improve on the conditions for asymptotic normality by proving a new result on the remainder term in the Bahadur representation for regression quantiles.  相似文献   

2.
In this paper, we first introduce new entropy estimators for distributions with known and bounded supports. Our estimators are obtained by using constrained maximum likelihood estimation of cumulative distribution function for absolutely continuous distributions with known and bounded supports. We prove the consistency of our estimators. Then, we propose uniformity tests based on the proposed entropy estimators and compare their powers with the powers of other tests of uniformity. Our simulation results show that the proposed entropy estimators perform well in estimating entropy and testing uniformity.  相似文献   

3.
Ridge regression is re-examined and ridge estimators based on prior information are introduced. A necessary and sufficient condition is given for such ridge estimators to yield estimators of every nonnull linear combination of the regression coefficients with smaller mean square error than that of the Gauss-Markov best linear unbiased estimator.  相似文献   

4.
Under suitable conditions upon prior distribution, the convergence rates for empirical Bayes estimators of parameters in multi-parameter exponential families (M-PEF) are obtained. It is shown that the assumptions Tong (1996) imposed on the marginal density can be reduced. The above result can also be extended to more general forms of M-PEF. Finally, some examples which satisfy the conditions of the theorems are given.  相似文献   

5.
Class specific stratified posterior probability estimators of misclassification probabilities in discriminant analysis simulations are introduced. These estimators afford a significant variance reduction over the usual count estimators. Sufficient conditions for a variance reduction are given. The stratified posterior probability estimator is generalized to other class specific expectations.  相似文献   

6.
In this note, we report a dramatic improvement in the computational efficiency of semiparametric generalized least squares(SGLS) estimation. Computation of SGLS estimates no longer presents serious problems with data sets of moderate size. We also correct a numerical error in the standard errors of the SGLS estimates reported in our recent paper in this journal (Horowitz and Neumann, 1987). The corrected standard errors of SGLS are comparable to those we reported for quantile estimates.  相似文献   

7.
In this note, we report a dramatic improvement in the computational efficiency of semiparametric generalized least squares(SGLS) estimation. Computation of SGLS estimates no longer presents serious problems with data sets of moderate size. We also correct a numerical error in the standard errors of the SGLS estimates reported in our recent paper in this journal (Horowitz and Neumann, 1987). The corrected standard errors of SGLS are comparable to those we reported for quantile estimates.  相似文献   

8.
In this paper, we propose two new tests to test the symmetry of a distribution. These tests are built up on the asymptotic normality of the L1-distance to the symmetry of the Kernel and histogram density estimates. A simulation study is carried out to evaluate performances of the kernel based test.  相似文献   

9.
For estimating unit roots of autoregressive processes, we introduce a new instrumental variable (IV) method which discounts large values of regressors corresponding to the unit roots. Based on the IV estimator, we propose new unit root tests whose limiting null distributions are standard normal. Observation at time t is adjusted for mean recursively by the sample mean of observations up to the time t. The powers of the proposed tests are better than those of the Dickey–Fuller tests and are comparable to those of the tests based on the weighted symmetric estimator, which are known to have the best power against stationary alternatives.  相似文献   

10.
This article considers the issue of performing tests in linear heteroskedastic models when the test statistic employs a consistent variance estimator. Several different estimators are considered, namely: HC0, HC1, HC2, HC3, and their bias-adjusted versions. The numerical evaluation is performed using numerical integration methods; the Imhof algorithm is used to that end. The results show that bias-adjustment of variance estimators used to construct test statistics delivers more reliable tests when they are performed for the HC0 and HC1 estimators, but the same does not hold for the HC3 estimator. Overall, the most reliable test is the HC3-based one.  相似文献   

11.
In this study some new unbiased estimators based on order statistics are proposed for the scale parameter in some family of scale distributions. These new estimators are suitable for the cases of complete (uncensored) and symmetric doubly Type-II censored samples. Further, they can be adapted to Type II right or Type II left censored samples. In addition, unbiased standard deviation estimators of the proposed estimators are also given. Moreover, unlike BLU estimators based on order statistics, expectation and variance-covariance of relevant order statistics are not required in computing these new estimators.

Simulation studies are conducted to compare performances of the new estimators with their counterpart BLU estimators for small sample sizes. The simulation results show that most of the proposed estimators in general perform almost as good as the counterpart BLU estimators; even some of them are better than BLU in some cases. Furthermore, a real data set is used to illustrate the new estimators and the results obtained parallel with those of BLUE methods.  相似文献   


12.
ABSTRACT

Recently, distance sampling emerged as an advantageous technique to estimate the abundance of many animal populations, including ungulates. Its basic design involves the random selection of several samplers (transects or points) within the population range, and a Horvitz–Thompson-like estimator is then applied to estimate the population abundance while correcting for animal detectability. Ensuring even coverage probability is essential for subsequent inference on the population size, but it may not be achievable because of limited access to parts of the population range. Moreover, in several environmental conditions, a random selection of samplers may induce very high survey costs because it does not minimize the displacement time of the observer(s) between successive samplers. We thus tested whether two-stage designs – based on the random selection of points and then of nearby samplers – could be more cost-effective, for a given population size and when even area coverage cannot be guaranteed. Here, we further extend our analyses to assess the performance of two-stage designs under varying animal densities.  相似文献   

13.
In this paper it is shown that data depth does not only provide consistent and robust estimators but also consistent and robust tests. Thereby, consistency of a test means that the Type I (αα) error and the Type II (ββ) error converge to zero with growing sample size in the interior of the nullhypothesis and the alternative, respectively. Robustness is measured by the breakdown point which depends here on a so-called concentration parameter. The consistency and robustness properties are shown for cases where the parameter of maximum depth is a biased estimator and has to be corrected. This bias is a disadvantage for estimation but an advantage for testing. It causes that the corresponding simplicial depth is not a degenerated U-statistic so that tests can be derived easily. However, the straightforward tests have a very poor power although they are asymptotic α-levelα-level tests. To improve the power, a new method is presented to modify these tests so that even consistency of the modified tests is achieved. Examples of two-dimensional copulas and the Weibull distribution show the applicability of the new method.  相似文献   

14.
15.
Let ?(1) and ?(2) be location-equivariant estimators of an unknown location parameter μ. It is shown that the test for H0: μ ≤ μ0 versus HA : μ > μ0 that rejects H0 if ?(1) is large is uniformly more powerful than the one that rejects H0 if ?(2) is large if and only if ?(2) is “more dispersed” than ?(1). A similar result is obtained for tests on scale using the star-shaped ordering. Examples are given.  相似文献   

16.
17.
18.
It is shown that a necessary and sufficient condition derived by Farebrother (1984)for a generalized ridge estimator to dominate the ordinary least-squares estimator with respect to the mean-square-error-matrix criterion in the linear regression model admits a similar interpretation as the well known criterion of Toro-Viz-carrondo and Wallace (1968)for the dominance of a restricted least-squares estimator over the ordinary least-squares estimator. Two other properties of the generalized ridge estimators, referring to the concept of admissibility, are also pointed out.  相似文献   

19.
Eva Fišerová 《Statistics》2013,47(3):241-251
We consider an unbiased estimator of a function of mean value parameters, which is not efficient. This inefficient estimator is correlated with a residual vector. Thus, if a unit dispersion is unknown, it is impossible to determine the correct confidence region for a function of mean value parameters via a standard estimator of an unknown dispersion with the exception of the case when the ordinary least squares (OLS) estimator is considered in a model with a special covariance structure such that the OLS and the generalized least squares (GLS) estimator are the same, that is the OLS estimator is efficient. Two different estimators of a unit dispersion independent of an inefficient estimator are derived in a singular linear statistical model. Their quality was verified by simulations for several types of experimental designs. Two new estimators of the unit dispersion were compared with the standard estimators based on the GLS and the OLS estimators of the function of the mean value parameters. The OLS estimator was considered in the incorrect model with a different covariance matrix such that the originally inefficient estimator became efficient. The numerical examples led to a slightly surprising result which seems to be due to data behaviour. An example from geodetic practice is presented in the paper.  相似文献   

20.
Methods for obtaining kernel-based density estimators with lower bias and mean integrated squared error than an estimator based on a standard Normal kernel function are described and discussed. Three main approaches are considered which are: firstly by using 'optimal' polynomial kernels as described, for example, by Gasser er a1 (1985); secondly by employing generalised jackknifing as proposed by Jones nd Foster (1993) and thirdly by subtracting an estimator of the principal asymptotic bias term from the original estimator. The emphasis in this initial discussion is on their asymptotic properties. The finite sample performance of those that have the best asymptotic properties are compared with two adaptive estimators, as well as the fixed Normal kernel estimator, in a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号