首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
According to Pitman's Measure of Closeness, if T1and T2are two estimators of a real parameter $[d], then T1is better than T2if Po[d]{\T1-o[d] < \T2-0[d]\} > 1/2 for all 0[d]. It may however happen that while T1is better than T2and T2is better than T3, T3is better than T1. Given q ? (0,1) and a sample X1, X2, ..., Xnfrom an unknown F ? F, an estimator T* = T*(X1,X2...Xn)of the q-th quantile of the distribution F is constructed such that PF{\F(T*)-q\ <[d] \F(T)-q\} >[d] 1/2 for all F?F and for all T€T, where F is a nonparametric family of distributions and T is a class of estimators. It is shown that T* =Xj:n'for a suitably chosen jth order statistic.  相似文献   

2.
Let X1,X2,… Xn be a sample of independent identically distributed (i.i.d)random variables having an unknown absolutely continuous distribution function f with density f the twofold aim of his paper consists in, firstly deriving asymptotic expressions of the mean intergrated squared error (MISE) of a kernel estimator of F when f is either assumed to be continuous everywhere or problem of finding optimal kernels in these two cases is studied in detail.  相似文献   

3.
Let X1,… Xm be a random sample of m failure times under normal conditions with the underlying distribution F(x) and Y1,…,Yn a random sample of n failure times under accelerated condititons with underlying distribution G(x);G(x)=1?[1?F(x)]θ with θ being the unknown parameter under study.Define:Uij=1 otherwise.The joint distribution of ijdoes not involve the distribution F and thus can be used to estimate the acceleration parameter θ.The second approach for estimating θ is to use the ranks of the Y-observations in the combined X- and Y-samples.In this paper we establish that the rank of the Y-observations in the pooled sample form a sufficient statistic for the information contained in the Uii 's about the parameter θ and that there does not exist an unbiassed estimator for the parameter θ.We also construct several estimators and confidence interavals for the parameter θ.  相似文献   

4.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

5.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

6.
The estimation of the distribution functon of a random variable X measured with error is studied. Let the i-th observation on X be denoted by YiXii where εi is the measuremen error. Let {Yi} (i=1,2,…,n) be a sample of independent observations. It is assumed that {Xi} and {∈i} are mutually independent and each is identically distributed. As is standard in the literature for this problem, the distribution of e is assumed known in the development of the methodology. In practice, the measurement error distribution is estimated from replicate observations.

The proposed semiparametric estimator is derived by estimating the quantises of X on a set of n transformed V-values and smoothing the estimated quantiles using a spline function. The number of parameters of the spline function is determined by the data with a simple criterion, such as AIC. In a simulation study, the semiparametric estimator dominates an optimal kernel estimator and a normal mixture estimator for a wide class of densities.

The proposed estimator is applied to estimate the distribution function of the mean pH value in a field plot. The density function of the measurement error is estimated from repeated measurements of the pH values in a plot, and is treated as known for the estimation of the distribution function of the mean pH value.  相似文献   

7.
The probabilities and factorial moments of the univar iate and multivariate generalized (or compound) discrete di st r-Lbut Lons with probability generating functions H(t)=F(G(t)) and H(t1,…,tk)=F(G(t1,…,tk))or H(t1,…,tk) = F(G1(t1),…, Gk( tk)) are derived using finite difference operators.  相似文献   

8.
Let X1, X2,…,Xn be independent, indentically distributed random variables with density f(x,θ) with respect to a σ-finite measure μ. Let R be a measurable set in the sample space X. The value of X is observable if X ? (X?R) and not otherwise. The number J of observable X’s is binomial, N, Q, Q = 1?P(X ? R). On the basis of J observations, it is desired to estimate N and θ. Estimators considered are conditional and unconditional maximum likelihood and modified maximum likelihood using a prior weight function to modify the likelihood before maximizing. Asymptotic expansions are developed for the [Ncirc]’s of the form [Ncirc] = N + α√N + β + op(1), where α and β are random variables. All estimators have the same α, which has mean 0, variance σ2 (a function of θ) and is asymptotically normal. Hence all are asymptotically equivalent by the usual limit distributional theory. The β’s differ and Eβ can be considered an “asymptotic bias”. Formulas are developed to compare the asymptotic biases of the various estimators. For a scale parameter family of absolutely continuous distributions with X = (0,∞) and R = (T,∞), special formuli are developed and a best estimator is found.  相似文献   

9.
In a model for rounded data suppose that the random sample X1,.,.,Xn,. i.i.d., is transformed into an observed random sample X,.,.,X, where X = 2vΔ if Xi, ∈ (2vΔ - Δ, 2vΔ + Δ), for i = 1,.,.,n. We show that the precision Δ of the observations has an important effect on the shape of the kernel density estimator, and we identify important points for the graphical display of this estimator. We examine the IMSE criteria to find the optimal window under the rounded-data model.  相似文献   

10.
Given λ∈(0-,l), let xλ(F) denote the unique λ-quantile of the distribution F. A distribution-free median-unbiased estimator of xλ(F) is explicitly constructed  相似文献   

11.
Let Xl,…,Xn (Yl,…,Ym) be a random sample from an absolutely continuous distribution with distribution function F(G).A class of distribution-free tests based on U-statistics is proposed for testing the equality of F and G against the alternative that X's are more dispersed then Y's. Let 2 ? C ? n and 2 ? d ? m be two fixed integers. Let ?c,d(Xil,…,Xic ; Yjl,…,Xjd)=1(-1)when max as well as min of {Xil,…,Xic ; Yjl,…,Yjd } are some Xi's (Yj's)and zero oterwise. Let Sc,d be the U-statistic corresponding to ?c,d.In case of equal sample sizes, S22 is equivalent to Mood's Statistic.Large values of Sc,d are significant and these tests are quite efficient  相似文献   

12.
Let X 1 and X 2 be two independent random variables from normal populations Π1, Π2 with different unknown location parameters θ1 and θ2, respectively and common known scale parameter σ. Let X (2) = max (X 1, X 2) and X (1) = min (X 1, X 2). We consider the problem of estimating the location parameter θ M (or θ J ) of the selected population under the reflected normal loss function. We obtain minimax estimators of θ M and θ J . Also, we provide sufficient conditions for the inadmissibility of invariant estimators of θ M and θ J .  相似文献   

13.
A sequence {Xn, n≥1} of independent and identically distributed random variables with continuous cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max {X1, X2, ..., Xj?1}. We define L(n)=min {j|j>L(n?1), Xj>XL(n?1)}, with L(0)=1. Let Zn,m=XL(n)?XL(m), n>m≥0. Some characterizations of the exponential distribution are considered in terms of Zn,m and XL(m).  相似文献   

14.
Let X1, …,Xn be a random sample from a normal distribution with mean θ and variance σ2 The problem is to estimate θ with loss function L(θ,e) = v(e-θ) where v(x) = b(exp(ax)-ax-l) and where a, b are constants with b>0, a¦0. Zellner (1986), showed that [Xbar] ? σ2a/2n dominates [Xbar] and hence [Xbar] is inadmissible. The question of what values of c and d render c[Xbar]+ d admissible is studied here.  相似文献   

15.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

16.
The purpose of this paper is twofold:On one hand we want to give a very simple algorithm for evaluating a special rank estimator of the type given in Behnen, Neuhaus, and Ruymgaart (1983) for the approximate optimal choice of the scores-generating function of a two-sample linear rank test for the general testing problem Ho:F=G versus H1:F ≤ G, F ≠ G, in order to demonstrate that the corresponding adaptive rank statistic is simple enough for practical applications. On the other hand we prove the asymptotic normality of the adaptive rank statistic under H (leading to approximate critical values) and demonstrate the adaptive behavior of the corresponding rank test by a Monte Carlo power simulation for sample sizes as low as m=10, n=10.  相似文献   

17.
We consider independent pairs (X1,∑1), (X2,∑2),…,(Xnn), where each Si is distributed according to some unknown density function g(∑) and, given ∑i = ∑, X has a conditional density function g(x|∑) of the Wishart type. In each pair, the first component is observable but the second is not. After the (n + l)-th observation Xn+i is obtained, the objective is to estimate ∑ n+i corresponding to Xn+i. This estimator is called an empirical Bayes (EB) estimator of ∑. We construct a linear EB estimator of ∑ and examine its precision.  相似文献   

18.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

19.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

20.
Let (?,X) be a random vector such that E(X|?) = ? and Var(x|?) a + b? + c?2 for some known constants a, b and c. Assume X1,…,Xn are independent observations which have the same distribution as X. Let t(X) be the linear regression of ? on X. The linear empirical Bayes estimator is used to approximate the linear regression function. It is shown that under appropriate conditions, the linear empirical Bayes estimator approximates the linear regression well in the sense of mean squared error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号