首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parametric families of multivariate nonnormal distributions have received considerable attention in the past few decades. The authors propose a new definition of a selection distribution that encompasses many existing families of multivariate skewed distributions. Their work is motivated by examples that involve various forms of selection mechanisms and lead to skewed distributions. They give the main properties of selection distributions and show how various families of multivariate skewed distributions, such as the skew‐normal and skew‐elliptical distributions, arise as special cases. The authors further introduce several methods of constructing selection distributions based on linear and nonlinear selection mechanisms.  相似文献   

2.
Recently in Dutt (1973, (1975), intgral representations over (0,A) were obtained for upper and lover multivariate normal and the probilities. It was pointed out that these integral representaitons when evaluated by Gauss-Hermite uadrature yield rapid and accurate numerical results.

Here integral representaitons, based on an integral formula due to Gurland (1948), are indicated for arbitrary multivariate probabilities. Application of this general representaion for computing multivariate x2 probabilities is discussed and numerical results using Gaussian quadrature are given for the bivariate and equicorre lated trivariate cases. Applications to the multivariate densities studied by Miller (1965) are also included  相似文献   

3.
A random vector has a multivariate Pareto distribution if one of its univariate conditional distribution is Pareto and some of its marginals are identically distributed.A general method developed in the course of the proof of this result is applied also to characterize the multivariate Student (Cauchy) measure by one univariate Student conditional distribution.  相似文献   

4.
In this article, a new form of multivariate slash distribution is introduced and some statistical properties are derived. In order to illustrate the advantage of this distribution over the existing generalized multivariate slash distribution in the literature, it is applied to a real data set.  相似文献   

5.
In this letter explicit expressions are derived for the cumulants and the vector-valued odd moments of the multivariate linearly skewed elliptical family of distributions. The general calculations of such moments are described by multivariate integrals which complicate the calculations. We show how such multivariate computations can be projected into a univariate framework, which extremely simplifies the computations.  相似文献   

6.
In this work, we investigate a new class of skew-symmetric distributions, which includes the distributions with the probability density function (pdf) given by g α(x)=2f(x) Gx), introduced by Azzalini [A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]. We call this new class as the symmetric-skew-symmetric family and it has the pdf proportional to f(x) G βx), where G β(x) is the cumulative distribution function of g β(x). We give some basic properties for the symmetric-skew-symmetric family and study the particular case obtained from the normal distribution.  相似文献   

7.
Hea-Jung Kim 《Statistics》2015,49(4):878-899
A screening problem is tackled by proposing a parametric class of distributions designed to match the behavior of the partially observed screened data. This class is obtained from the nontruncated marginal of the rectangle-truncated multivariate normal distributions. Motivations for the screened distribution as well as some of the basic properties, such as its characteristic function, are presented. These allow us a detailed exploration of other important properties that include closure property in linear transformation, in marginal and conditional operations, and in a mixture operation as well as the first two moments and some sampling distributions. Various applications of these results to the statistical modelling and data analysis are also provided.  相似文献   

8.
Families of multivariate geometric distributions with flexible correlations can be constructed by applying inverse sampling to a sequence of multinomial trials, and counting outcomes in possibly overlapping categories. Further multivariate families can be obtained by considering other stopping rules, with the possibility of different stopping roles for different counts, A simple characterisation is given for stopping rules which produce joint distributions with marginals having the same form as that of the number of trials. The inverse sampling approach provides a unified treatment of diverse results presented by earlier authors, including Goldberg (1934), Bates and Meyman (1952), Edwards and Gurland (1961), Hawkes (1972), Paulson and Uppulori (1972) and Griffiths and Milne (1987). It also provides a basis for investigating the range of possible correlations for a given set of marginal parameters. In the case of more than two joint geometric or negative binomial variables, a convenient matrix formulation is provided.  相似文献   

9.
S. Zheng  J. M. Hardin 《Statistics》2013,47(3):361-371
In this paper, we prove that the joint distribution of random vectors Z 1 and Z 2 and the distribution of Z 2 are skew normal provided that Z 1 is skew normally distributed and Z 2 conditioning on Z 1 is distributed as closed skew normal. Also, we extend the main results to the matrix variate case.  相似文献   

10.
Troutt (1991,1993) proposed the idea of the vertical density representation (VDR) based on Box-Millar method. Kotz, Fang and Liang (1997) provided a systematic study on the multivariate vertical density representation (MVDR). Suppose that we want to generate a random vector X[d]Rnthat has a density function ?(x). The key point of using the MVDR is to generate the uniform distribution on [D]?(v) = {x :?(x) = v} for any v > 0 which is the surface in RnIn this paper we use the conditional distribution method to generate the uniform distribution on a domain or on some surface and based on it we proposed an alternative version of the MVDR(type 2 MVDR), by which one can transfer the problem of generating a random vector X with given density f to one of generating (X, Xn+i) that follows the uniform distribution on a region in Rn+1defined by ?. Several examples indicate that the proposed method is quite practical.  相似文献   

11.
In this paper we introduce a new class of multivariate unimodal distributions, motivated by Khintchine's representation for unimodal densities on the real line. We start by introducing a new class of unimodal distributions which can then be naturally extended to higher dimensions, using the multivariate Gaussian copula. Under both univariate and multivariate settings, we provide MCMC algorithms to perform inference about the model parameters and predictive densities. The methodology is illustrated with univariate and bivariate examples, and with variables taken from a real data set.  相似文献   

12.
Hea-Jung Kim 《Statistics》2013,47(1):89-106
This article introduces a class of weighted multivariate t-distributions, which includes the multivariate generalized Student t and multivariate skew t as its special members. This class is defined as the marginal distribution of a doubly truncated multivariate generalized Student t-distribution and studied from several aspects such as weighting of probability density functions, inequality constrained multivariate Student t-distributions, scale mixtures of multivariate normal and probabilistic representations. The relationships among these aspects are given, and various properties of the class are also discussed. Necessary theories and two applications are provided.  相似文献   

13.
The multivariate log-normal distribution is a good candidate to describe data that are not only positive and skewed, but also contain many characteristic values. In this study, we apply the generalized variable method to compare the mean vectors of two independent multivariate log-normal populations that display heteroscedasticity. Two generalized pivotal quantities are derived for constructing the generalized confidence region and for testing the difference between two mean vectors. Simulation results indicate that the proposed procedures exhibit satisfactory performance regardless of the sample sizes and heteroscedasticity. The type I error rates obtained are consistent with expectations and the coverage probabilities are close to the nominal level when compared with the other method which is currently available. These features make the proposed method a worthy alternative for inferential analysis of problems involving multivariate log-normal means. The results are illustrated using three examples.  相似文献   

14.
Abstract: The authors develop a new class of distributions by introducing skewness in multivariate elliptically symmetric distributions. The class, which is obtained by using transformation and conditioning, contains many standard families including the multivariate skew‐normal and t distributions. The authors obtain analytical forms of the densities and study distributional properties. They give practical applications in Bayesian regression models and results on the existence of the posterior distributions and moments under improper priors for the regression coefficients. They illustrate their methods using practical examples.  相似文献   

15.
ABSTRACT

Elsewhere, I have promoted (univariate continuous) “transformation of scale” (ToS) distributions having densities of the form 2g?1(x)) where g is a symmetric distribution and Π is a transformation function with a special property. Here, I develop bivariate (readily multivariate) ToS distributions. Univariate ToS distributions have a transformation of random variable relationship with Azzalini-type skew-symmetric distributions; the bivariate ToS distribution here arises from marginal variable transformation of a particular form of bivariate skew-symmetric distribution. Examples are given, as are basic properties—unimodality, a covariance property, random variate generation—and connections with a bivariate inverse Gaussian distribution are pointed out.  相似文献   

16.
Weighted distributions (univariate and bivariate) have received widespread attention over the last two decades because of their flexibility for analyzing skewed data. In this article, we propose an alternative method to construct a new family of bivariate and multivariate weighted distributions. For illustrative purposes, some examples of the proposed method are presented. Several structural properties of the bivariate weighted distributions including marginal distributions together with distributions of the minimum and maximum, evaluation of the reliability parameter, and verification of total positivity of order two are also presented. In addition, we provide some multivariate extensions of the proposed models. A real-life data set is used to show the applicability of these bivariate weighted distributions.  相似文献   

17.
The authors discuss prior distributions that are conjugate to the multivariate normal likelihood when some of the observations are incomplete. They present a general class of priors for incorporating information about unidentified parameters in the covariance matrix. They analyze the special case of monotone patterns of missing data, providing an explicit recursive form for the posterior distribution resulting from a conjugate prior distribution. They develop an importance sampling and a Gibbs sampling approach to sample from a general posterior distribution and compare the two methods.  相似文献   

18.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

19.
20.
For the characteristic values T1 of the matrix V:=Diag(p)-ppT with p=(p1,...,pk), p1≥p2≥...≥pk≥pk+1>0 and p1+p2+...+pk+pk+1=1 the inequalities p1≥τ1≥p2≥τ2≥...≥pk≥τk>0 are given by RONNING (1982). These inequalities give, if p and pk+1 are unknown, the upper bound 1≥T1. However, in this note the bound 1/2≥T1 is derived. V is proportional to the covariance matrix for multinomial, Dirichlet and multivariate hypergeometric distributions. A statistical application for the multinomial distribution is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号