首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A paramecer-free Bernstein-type upper bound is derived for the probability that the sum S of n i.i.d, unimodal random variables with finite support, X1 ,X2,…,Xn, exceeds its mean E(S) by the positive value nt. The bound for P{S - nμ ≥ nt} depends on the range of the summands, the sample size n, the positive number t, and the type of unimodality assumed for Xi. A two-sided Gauss-type probability inequality for sums of strongly unimodal random variables is also given. The new bounds are contrasted to Hoeffding's inequality for bounded random variables and to the Bienayme-Chebyshev inequality. Finally, the new inequalities are applied to a classic probability inequality example first published by Savage (1961).  相似文献   

2.
Let H(x, y) be a continuous bivariate distribution function with known marginal distribution functions F(x) and G(y). Suppose the values of H are given at several points, H(x i , y i ) = θ i , i = 1, 2,…, n. We first discuss conditions for the existence of a distribution satisfying these conditions, and present a procedure for checking if such a distribution exists. We then consider finding lower and upper bounds for such distributions. These bounds may be used to establish bounds on the values of Spearman's ρ and Kendall's τ. For n = 2, we present necessary and sufficient conditions for existence of such a distribution function and derive best-possible upper and lower bounds for H(x, y). As shown by a counter-example, these bounds need not be proper distribution functions, and we find conditions for these bounds to be (proper) distribution functions. We also present some results for the general case, where the values of H(x, y) are known at more than two points. In view of the simplification in notation, our results are presented in terms of copulas, but they may easily be expressed in terms of distribution functions.  相似文献   

3.
Let Xl,…,Xn (Yl,…,Ym) be a random sample from an absolutely continuous distribution with distribution function F(G).A class of distribution-free tests based on U-statistics is proposed for testing the equality of F and G against the alternative that X's are more dispersed then Y's. Let 2 ? C ? n and 2 ? d ? m be two fixed integers. Let ?c,d(Xil,…,Xic ; Yjl,…,Xjd)=1(-1)when max as well as min of {Xil,…,Xic ; Yjl,…,Yjd } are some Xi's (Yj's)and zero oterwise. Let Sc,d be the U-statistic corresponding to ?c,d.In case of equal sample sizes, S22 is equivalent to Mood's Statistic.Large values of Sc,d are significant and these tests are quite efficient  相似文献   

4.
Let (X1,X2, …,Xn) be jointly distributed random variables. Define Xn:n = max(X1,X2, …,Xn).Bounds on E(Xn:n), obtained by putting constraints on the distributions and/or dependence structure of the Xi's, are surveyed.  相似文献   

5.
Consider an infinite sequence of independent random variables having common continuous c.d.f. F. For 1 ⩽ in, let Xi:n denote the ith order statistic of the first n random variables, and let {X(n), n ⩾ 1} be the sequence of upper record values. We examine the similarities and differences between the dependence structures of the Xi:n's and the X(n)'s, with an emphasis on the latter. We present an interesting situation involving a characterization of F using the moment sequence of records. We obtain characterizations based on the properties of certain regression functions associated with order statistics, record values, and the original observations. We discuss the resemblance between some known and some new characterizations based on order statistics, record values and those based on the properties of truncated F.  相似文献   

6.
In the competing risks set up with two dependent competing risks, the joint distribution of (X1,X2), the latent lifetimes of the system under the two risks, is not identifiable on the basis of the distribution of the actual observation (T, δ) where T = min(X1, X2) and δ = I(T=X1), Using Peterson's (1976) bounds, we have obtained conservative pointwise as well as simultaneous confidence bounds for the unidentifiable joint survival function. In an example we evaluate the confidence bounds and Indicate where the estimated joint survival function in the independent case, lies within them.  相似文献   

7.
Let (X i , Y i ), i = 1, 2,…, n be independent and identically distributed random variables from some continuous bivariate distribution. If X (r) denotes the rth-order statistic, then the Y's associated with X (r) denoted by Y [r] is called the concomitant of the rth-order statistic. In this article, we derive an analytical expression of Shannon entropy for concomitants of order statistics in FGM family. Applying this expression for some well-known distributions of this family, we obtain the exact form of Shannon entropy, some of the information properties, and entropy bounds for concomitants of order statistics. Some comparisons are also made between the entropy of order statistics X (r) and the entropy of its concomitants Y [r]. In this family, we show that the mutual information between X (r) and Y [r], and Kullback–Leibler distance among the concomitants of order statistics are all distribution-free. Also, we compare the Pearson correlation coefficient between X (r) and Y [r] with the mutual information of (X (r), Y [r]) for the copula model of FGM family.  相似文献   

8.
Suppose that Xi are independent random variables, and that Xi has cdf Fi (x), 1 ≤ ik. Many statistical problems involve the probability Pr{X 1 < X 2 < ··· < Xk }. In this note a numerical method is proposed for computing this probability.  相似文献   

9.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

10.
In this paper we obtain nonuniform Berry-Esseen bounds of the kernel estimate of stationary process {Xi} by the method of martingale approximation. In particular, by choice of bandwidth bn, the Berry-Esseen bounds can be n−2/15. The dependence condition of {Xi} is expressed in terms of physical dependence measures introduced by Wu (2005).  相似文献   

11.
In multi-stage sampling with the first stage units (fsu) chosen without replacement (WOR) with varying probability schemes (VPS) unbiased estimators (UE) of variances of homogeneous linear (HL) functions of unbiased estimators (UE) Ti's of fsu totals Yi's based on selection of subsequent stage units (SSU) from chosen fsu's are derived as homogeneous quadratic (HQ) functions of alternative less efficient UE's, say of Ti';'s of Yi's. Specific strategies are illustrated.  相似文献   

12.
Simulating a stationary AR(p), Xt = ∑pi=1αiXti + Zt, when the innovations {Zt} are assumed to be i.i.d. is straightforward. Starting the process in the stationary state, however, requires generation of (X1,X2,…,Xp) from the stationary p-dimensional distribution. When Zt is normal this may be achieved by generating Xi as a linear function of X1,X2,…,Xi−1 and an independent normal variate for i = 2,3,…, p. It is shown that the ability to initialize a stationary AR(p) in this way characterizes the normal distribution.  相似文献   

13.
14.
Let Xl,…,Xn be normally and independently distributed with means θl,…,θnand a cornmorl variance. Thus there are n observations and n+i unknwon parameters. A test of the null hypothesis that, the θi's are all zero and the alternative that the vector (θl,…,θn) lies in a convex cone with its vertex a.t the origin is connsidered in this paper. It is shown that under a mild condition the likelihood ratio test is possible. The ordinary one sided t - test belongs to the class of tests considered in this paper. The hypothesis of equality of means against the simple order alternative can be tested in certain cases .  相似文献   

15.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

16.
17.
This paper offers a predictive approach for the selection of a fixed number (= t) of treatments from k treatments with the goal of controlling for predictive losses. For the ith treatment, independent observations X ij (j = 1,2,…,n) can be observed where X ij ’s are normally distributed N(θ i ; σ 2). The ranked values of θ i ’s and X i ’s are θ (1) ≤ … ≤ θ (k) and X [1] ≤ … ≤ X [k] and the selected subset S = {[k], [k? 1], … , [k ? t+1]} will be considered. This paper distinguishes between two types of loss functions. A type I loss function associated with a selected subset S is the loss in utility from the selector’s view point and is a function of θ i with i ? S. A type II loss function associated with S measures the unfairness in the selection from candidates’ viewpoint and is a function of θ i with i ? S. This paper shows that under mild assumptions on the loss functions S is optimal and provides the necessary formulae for choosing n so that the two types of loss can be controlled individually or simultaneously with a high probability. Predictive bounds for the losses are provided, Numerical examples support the usefulness of the predictive approach over the design of experiment approach.  相似文献   

18.
The probability density function (pdf) of a two parameter exponential distribution is given by f(x; p, s?) =s?-1 exp {-(x - ρ)/s?} for x≥ρ and 0 elsewhere, where 0 < ρ < ∞ and 0 < s?∞. Suppose we have k independent random samples where the ith sample is drawn from the ith population having the pdf f(x; ρi, s?i), 0 < ρi < ∞, 0 < s?i < s?i < and f(x; ρ, s?) is as given above. Let Xi1 < Xi2 <… < Xiri denote the first ri order statistics in a random sample of size ni, drawn from the ith population with pdf f(x; ρi, s?i), i = 1, 2,…, k. In this paper we show that the well known tests of hypotheses about the parameters ρi, s?i, i = 1, 2,…, k based on the above observations are asymptotically optimal in the sense of Bahadur efficiency. Our results are similar to those for normal distributions.  相似文献   

19.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

20.
For each n, k ∈ ?, let Y i  = (Y i1, Y i2,…, Y ik ), 1 ≤ i ≤ n be independent random vectors in ? k with finite third moments and Y ij are independent for all j = 1, 2,…, k. In this article, we use the Stein's technique to find constants in uniform bounds for multidimensional Berry-Esseen inequality on a closed sphere, a half plane and a rectangular set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号