首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
A stochastic approximation procedure of the Robbins-Monro type is considered. The original idea behind the Newton-Raphson method is used as follows. Given n approximations X1,…, Xn with observations Y1,…, Yn, a least squares line is fitted to the points (Xm, Ym),…, (Xn, Yn) where m<n may depend on n. The (n+1)st approximation is taken to be the intersection of the least squares line with y=0. A variation of the resulting process is studied. It is shown that this process yields a strongly consistent sequence of estimates which is asymptotically normal with minimal asymptotic variance.  相似文献   

2.
For a random walk {R n ≥0} given on a homogeneous irreducible finite MARKOV chain {X n ≥0} the identity (8) is obtained. Generalizations (14)-(16) of WALD's Fundamental Identity and WALD's first and second equations for the two-dimensional process {(R n ,X n ), n≥0} are proved. The Average Sample Number (21)-(22) and the Operating Characteristic Function (24)-(25) of a Sequential Probability Ratio Test follow. With this test a decision about two simple hypotheses on the unknown transition probability matrix of {X n , n≥0} and the unknown parameters of the probability distributions for the increments of {X n , n≥0} can be made. For a special case these results were proved by PHATARFOD [6] and KüCHLER [3] with other methods.  相似文献   

3.
We consider automatic data-driven density, regression and autoregression estimates, based on any random bandwidth selector h/T. We show that in a first-order asymptotic approximation they behave as well as the related estimates obtained with the “optimal” bandwidth hT as long as hT/hT → 1 in probability. The results are obtained for dependent observations; some of them are also new for independent observations.  相似文献   

4.
ON THE NUMBER OF RECORDS NEAR THE MAXIMUM   总被引:3,自引:0,他引:3  
Recent work has considered properties of the number of observations Xj, independently drawn from a discrete law, which equal the sample maximum X(n) The natural analogue for continuous laws is the number Kn(a) of observations in the interval (X(n)a, X(n)], where a > 0. This paper derives general expressions for the law, first moment, and probability generating function of Kn(a), mentioning examples where evaluations can be given. It seeks limit laws for n→ and finds a central limit result when a is fixed and the population law has a finite right extremity. Whenever the population law is attracted to an extremal law, a limit theorem can be found by letting a depend on n in an appropriate manner; thus the limit law is geometric when the extremal law is the Gumbel type. With these results, the paper obtains limit laws for ‘top end’ spacings X(n) - X(n-j) with j fixed.  相似文献   

5.
We study a randomized adaptive design to assign one of the LL treatments to patients who arrive sequentially by means of an urn model. At each stage nn, a reward is distributed between treatments. The treatment applied is rewarded according to its response, 0?Yn?10?Yn?1, and 1-Yn1-Yn is distributed among the other treatments according to their performance until stage n-1n-1. Patients can be classified in K+1K+1 levels and we assume that the effect of this level in the response to the treatments is linear. We study the asymptotic behavior of the design when the ordinary least square estimators are used as a measure of performance until stage n-1n-1.  相似文献   

6.
Winfried Stute 《Statistics》2013,47(3-4):255-266
Let X 1, …, X [], X [] + 1, …, X n be a sequence of independent random variables (the “lifetimes”) such that X j ? F 1 for 1 ≤ j ≤ [] and X j ? F 2 for [] + 1 ≤ jn, with F 1 F 2 unknown. In this paper we investigate an estimator θ n for the changepoint θ if the X's are subject to censoring. The rate of almost sure convergence of θ n to θ is established and a test for the hypothesis θ = 0, i.e. “no change”, is proposed.  相似文献   

7.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

8.
Consider a normal population with unknown mean μ and unknown variance σ2. We estimate μ under an asymmetric LINEX loss function such that the associated risk is bounded from above by a known quantity w. This necessitates the use of a random number (N) of observations. Under a fairly broad set of assumptions on N, we derive the asymptotic second-order expansion of the associated risk function. Some examples have been included involving accelerated sequential and three-stage sampling techniques. Performance comparisons of these procedures are considered using a Monte-Carlo study.  相似文献   

9.
Let X1…, Xm and Y1…, Yn be two independent sequences of i.i.d. random variables with distribution functions Fx(.|θ) and Fy(. | φ) respectively. Let g(θ, φ) be a real-valued function of the unknown parameters θ and φ. The purpose of this paper is to suggest a sequential procedure which gives a fixed-width confidence interval for g(θ, φ) so that the coverage probability is approximately α (preas-signed). Certain asymptotic optimality properties of the sequential procedure are established. A Monte Carlo study is presented.  相似文献   

10.
Let Xi≤?≤Xm and Yi≤?≤Yn be two sets of independent order statistics from continous distributions with distribution functions F and G respectively. Let Ri denote the rank of Xi in the combined order sample. Steck (1980) has found an expression for P(biRiai, all i) when F = h(G), h being the incomplete beta function with parameters (α,β?α+1). An alternative expression for the same probability is obtained which is computationally a substantial improvement on Steck's result.  相似文献   

11.
A sequence of independent random variables {Zn:n≥ 1} with unknown probability distributions is considered and the problem of estimating their expectations {Mn+1: n≥ 1} is examined. The estimation of Mn+1 is based on a finite set {zk:1≤kn}, each zk being an observed value of Zk, 1 ≤kn, and also based on the assumption that {Mn:n≥ 1} follows an unknown trend of a specified form.  相似文献   

12.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

13.
Let X2: n and Y2: m be the second order statistics from n independent exponential variables with hazards λ1, …, λn, and an independent exponential sample of size m with hazard change to λ, respectively. When m ? n, we obtain necessary and sufficient conditions for comparing X2: n and Y2: m in mean residual life, dispersive, hazard rate, and likelihood ratio orderings based on some inequalities between λi’s and λ. The established results show how one can compare an (n ? 1)-out-of-n system consisting of heterogeneous components with exponential lifetimes with any (m ? 1)-out-of-m system consisting of homogeneous components with exponential lifetimes.  相似文献   

14.
The mean vector associated with several independent variates from the exponential subclass of Hudson (1978) is estimated under weighted squared error loss. In particular, the formal Bayes and “Stein-like” estimators of the mean vector are given. Conditions are also given under which these estimators dominate any of the “natural estimators”. Our conditions for dominance are motivated by a result of Stein (1981), who treated the Np (θ, I) case with p ≥ 3. Stein showed that formal Bayes estimators dominate the usual estimator if the marginal density of the data is superharmonic. Our present exponential class generalization entails an elliptic differential inequality in some natural variables. Actually, we assume that each component of the data vector has a probability density function which satisfies a certain differential equation. While the densities of Hudson (1978) are particular solutions of this equation, other solutions are not of the exponential class if certain parameters are unknown. Our approach allows for the possibility of extending the parametric Stein-theory to useful nonexponential cases, but the problem of nuisance parameters is not treated here.  相似文献   

15.
Let X1,X2, … be iid random variables with the pdf f(x,θ)=exp(θx?b(θ)) relative to a σ-finite measure μ, and consider the problem of deciding among three simple hypotheses Hi:θ=θi (1?i?3) subject to P(acceptHi|θi)=1?α (1?i?3). A procedure similar to Sobel–Wald procedure is discussed and its asymptotic efficiency as compared with the best nonsequential test is obtained by finding the limit lima→0(EiN(a)/n(a)), where N (a) is the stopping time of the proposed procedure and n(a) is the sample size of the best non-sequential test. It is shown that the same asymptotic limit holds for the original Sobel–Wald procedure. Specializing to N(θ,1) distribution it is found that lima→0(EiN(α)/n(α))=14 (i=1,2) and lima→0 (E3N(α)n(α))=δ21/4δ, where δi=(θi+1?θi) with 0<δ1?δ2. Also, the asymptotic efficiency evaluated when the X's have an exponential distribution.  相似文献   

16.
This paper extends the analysis of the bivariate Seemingly Unrelated Regression (SUN) Tobit model by modeling its nonlinear dependence structure through the Clayton copula. The ability to capture/model the lower tail dependence of the SUN Tobit model where some data are censored (generally, left-censored at zero) is an useful feature of the Clayton copula. We propose a modified version of the (classical) Inference Function for Margins (IFS) method by Joe and XP [H. Joe and J.J. XP, The estimation method of inference functions for margins for multivariate models, Tech. Rep. 166, Department of Statistics, University of British Columbia, 1996], which we refer to as Modified Inference Function for Margins (MIFF) method, to obtain the (point) estimates of the marginal and Clayton copula parameters. More specifically, we employ the (frequenting) data augmentation technique at the second stage of the IFS method (the first stage of the MIFF method is equivalent to the first stage of the IFS method) to generate the censored observations and then estimate the Clayton copula parameter. This process (data augmentation and copula parameter estimation) is repeated until convergence. Such modification at the second stage of the usual estimation method is justified in order to obtain continuous marginal distributions, which ensures the uniqueness of the resulting Clayton copula, as stated by Solar's [A. Solar, Fonctions de répartition à n dimensions et leurs marges, Publ. de l'Institut de Statistique de l'Université de Paris 8 (1959), pp. 229–231] theorem; and also to provide an unbiased estimate of the association parameter (the IFS method provides a biased estimate of the Clayton copula parameter in the presence of censored observations in both margins). Since the usual asymptotic approach, that is the computation of the asymptotic covariance matrix of the parameter estimates, is troublesome in this case, we also propose the use of resampling procedures (bootstrap methods, such as standard normal and percentile, by Efron and Tibshirani [B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, 1993] to obtain confidence intervals for the model parameters.  相似文献   

17.
In this article, we investigate techniques for constructing tolerance limits such that the probability is γ that at least p proportion of the population would exceed that limit. We consider the unbalanced case and study the behavior of the limit as a function of ni 's (where ni is the number of observations in the ith batch), as well as that of the variance ratio. To construct the tolerance limits we use the approximation given in Thomas and Hultquist (1978). We also discuss the procedure for constructing the tolerance limits when the variance ratio is unknown. An example is given to illustrate the results.  相似文献   

18.
This article introduces a new average of n independent continuous random variables X1, …, Xn weighted by Dirichlet random components. A relation between the Cauchy–Stieltjes transforms of the distribution functions of this weighted average and X1, …, Xn is established. Several examples illustrate usefulness and applicability of the result.  相似文献   

19.
Consider k( ? 2) normal populations with unknown means μ1, …, μk, and a common known variance σ2. Let μ[1] ? ??? ? μ[k] denote the ordered μi.The populations associated with the t(1 ? t ? k ? 1) largest means are called the t best populations. Hsu and Panchapakesan (2004) proposed and investigated a procedure RHPfor selecting a non empty subset of the k populations whose size is at most m(1 ? m ? k ? t) so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whenever μ[k ? t + 1] ? μ[k ? t] ? δ*, where P*?and?δ* are specified in advance of the experiment. This probability requirement is known as the indifference-zone probability requirement. In the present article, we investigate the same procedure RHP for the same goal as before but when k ? t < m ? k ? 1 so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whatever be the configuration of the unknown μi. The probability requirement in this latter case is termed the subset selection probability requirement. Santner (1976) proposed and investigated a different procedure (RS) based on samples of size n from each of the populations, considering both cases, 1 ? m ? k ? t and k ? t < m ? k. The special case of t = 1 was earlier studied by Gupta and Santner (1973) and Hsu and Panchapakesan (2002) for their respective procedures.  相似文献   

20.
Consider k( ? 2) normal populations whose means are all known or unknown and whose variances are unknown. Let σ2[1] ? ??? ? σ[k]2 denote the ordered variances. Our goal is to select a non empty subset of the k populations whose size is at most m(1 ? m ? k ? 1) so that the population associated with the smallest variance (called the best population) is included in the selected subset with a guaranteed minimum probability P* whenever σ2[2][1]2 ? δ* > 1, where P* and δ* are specified in advance of the experiment. Based on samples of size n from each of the populations, we propose and investigate a procedure called RBCP. We also derive some asymptotic results for our procedure. Some comparisons with an earlier available procedure are presented in terms of the average subset sizes for selected slippage configurations based on simulations. The results are illustrated by an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号