首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discriminating between the generalized Rayleigh and Weibull distributions   总被引:1,自引:0,他引:1  
Generalized Rayleigh (GR) and Weibull (WE) distributions are used quite effectively for analysing skewed lifetime data. In this paper, we consider the problem of selecting either GR or WE distribution as a more appropriate fitting model for a given data set. We use the ratio of maximized likelihoods (RML) for discriminating between the two distributions. The asymptotic and simulated distributions of the logarithm of the RML are applied to determine the probability of correctly selecting between these two families of distributions. It is examined numerically that the asymptotic results work quite well even for small sample sizes. A real data set involving the annual rainfall recorded at Los Angeles Civic Center during 25 years is analysed to illustrate the procedures developed here.  相似文献   

2.
Surles and Padgett recently considered two-parameter Burr Type X distribution by introducing a scale parameter and called it the generalized Rayleigh distribution. It is observed that the generalized Rayleigh and log-normal distributions have many common properties and both distributions can be used quite effectively to analyze skewed data set. In this paper, we mainly compare the Fisher information matrices of the two distributions for complete and censored observations. Although, both distributions may provide similar data fit and are quite similar in nature in many aspects, the corresponding Fisher information matrices can be quite different. We compute the total information measures of the two distributions for different parameter ranges and also compare the loss of information due to censoring. Real data analysis has been performed for illustrative purposes.  相似文献   

3.
The two-parameter generalized exponential distribution was recently introduced by Gupta and Kundu (Austral. New Zealand J. Statist. 40 (1999) 173). It is observed that the Generalized Exponential distribution can be used quite effectively to analyze skewed data set as an alternative to the more popular log-normal distribution. In this paper, we use the ratio of the maximized likelihoods in choosing between the log-normal and generalized exponential distributions. We obtain asymptotic distributions of the logarithm of the ratio of the maximized likelihoods and use them to determine the required sample size to discriminate between the two distributions for a user specified probability of correct selection and tolerance limit.  相似文献   

4.
The exponential and Rayleigh are the two most commonly used distributions for analyzing lifetime data. These distributions have several desirable properties and nice physical interpretations. Unfortunately, the exponential distribution only has constant failure rate and the Rayleigh distribution has increasing failure rate. The linear failure rate distribution generalizes both these distributions which may have non increasing hazard function also. This article introduces a new distribution, which generalizes linear failure rate distribution. This distribution generalizes the well-known (1) exponential distribution, (2) linear failure rate distribution, (3) generalized exponential distribution, and (4) generalized Rayleigh distribution. The properties of this distribution are discussed in this article. The maximum likelihood estimates of the unknown parameters are obtained. A real data set is analyzed and it is observed that the present distribution can provide a better fit than some other very well-known distributions.  相似文献   

5.
Log-normal and Weibull distributions are the two most popular distributions for analysing lifetime data. In this paper, we consider the problem of discriminating between the two distribution functions. It is assumed that the data are coming either from log-normal or Weibull distributions and that they are Type-II censored. We use the difference of the maximized log-likelihood functions, in discriminating between the two distribution functions. We obtain the asymptotic distribution of the discrimination statistic. It is used to determine the probability of correct selection in this discrimination process. We perform some simulation studies to observe how the asymptotic results work for different sample sizes and for different censoring proportions. It is observed that the asymptotic results work quite well even for small sizes if the censoring proportions are not very low. We further suggest a modified discrimination procedure. Two real data sets are analysed for illustrative purposes.  相似文献   

6.
The generalized Rayleigh distribution was introduced and studied quite effectively in the literature. The closeness and separation between the distributions are extremely important for analyzing any lifetime data. In this spirit, both the generalized Rayleigh and Weibull distributions can be used for analyzing skewed datasets. In this article, we compare these two distributions based on the Fisher information measures and use it for discrimination purposes. It is evident that the Fisher information measures play an important role in separating between the distributions. The total information measures and the variances of the different percentile estimators are computed and presented. A real life dataset is analyzed for illustration purposes and a numerical comparison study is performed to assess our procedures in separating between these two distributions.  相似文献   

7.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

8.
Among statistical inferences, one of the main interests is drawing the inferences about the log-normal means since the log-normal distribution is a well-known candidate model for analyzing positive and right-skewed data. In the past, the researchers only focused on one or two log-normal populations or used the large sample theory or quadratic procedure to deal with several log-normal distributions. In this article, we focus on making inferences on several log-normal means based on the modification of the quadratic method, in which the researchers often used the vector of the generalized variables to deal with the means of the symmetric distributions. Simulation studies show that the quadratic method performs well only for symmetric distributions. However, the modified procedure fits both symmetric and skew distribution. The numerical results show that the proposed modified procedure can provide the confidence interval with coverage probabilities close to the nominal level and the hypothesis testing performed with satisfactory results.  相似文献   

9.
The use of goodness-of-fit test based on Anderson–Darling (AD) statistic is discussed, with reference to the composite hypothesis that a sample of observations comes from a generalized Rayleigh distribution whose parameters are unspecified. Monte Carlo simulation studies were performed to calculate the critical values for AD test. These critical values are then used for testing whether a set of observations follows a generalized Rayleigh distribution when the scale and shape parameters are unspecified and are estimated from the sample. Functional relationship between the critical values of AD is also examined for each shape parameter (α), sample size (n) and significance level (γ). The power study is performed with the hypothesized generalized Rayleigh against alternate distributions.  相似文献   

10.
For the first time, we propose a new distribution so-called the beta generalized Rayleigh distribution that contains as special sub-models some well-known distributions. Expansions for the cumulative distribution and density functions are derived. We obtain explicit expressions for the moments, moment generating function, mean deviations, Bonferroni and Lorenz curves and densities of the order statistics and their moments. We estimate the parameters by maximum likelihood and provide the observed information matrix. The usefulness of the new distribution is illustrated through two real data sets that show that it is quite flexible in analyzing positive data instead of the generalized Rayleigh and Rayleigh distributions.  相似文献   

11.
The Weibull, log-logistic and log-normal distributions are extensively used to model time-to-event data. The Weibull family accommodates only monotone hazard rates, whereas the log-logistic and log-normal are widely used to model unimodal hazard functions. The increasing availability of lifetime data with a wide range of characteristics motivate us to develop more flexible models that accommodate both monotone and nonmonotone hazard functions. One such model is the exponentiated Weibull distribution which not only accommodates monotone hazard functions but also allows for unimodal and bathtub shape hazard rates. This distribution has demonstrated considerable potential in univariate analysis of time-to-event data. However, the primary focus of many studies is rather on understanding the relationship between the time to the occurrence of an event and one or more covariates. This leads to a consideration of regression models that can be formulated in different ways in survival analysis. One such strategy involves formulating models for the accelerated failure time family of distributions. The most commonly used distributions serving this purpose are the Weibull, log-logistic and log-normal distributions. In this study, we show that the exponentiated Weibull distribution is closed under the accelerated failure time family. We then formulate a regression model based on the exponentiated Weibull distribution, and develop large sample theory for statistical inference. We also describe a Bayesian approach for inference. Two comparative studies based on real and simulated data sets reveal that the exponentiated Weibull regression can be valuable in adequately describing different types of time-to-event data.  相似文献   

12.
Mudholkar and Srivastava [1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliability 42, 299–302] introduced three-parameter exponentiated Weibull distribution. Two-parameter exponentiated exponential or generalized exponential distribution is a particular member of the exponentiated Weibull distribution. Generalized exponential distribution has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions. It is observed that it can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. The genesis of this model, several properties, different estimation procedures and their properties, estimation of the stress-strength parameter, closeness of this distribution to some of the well-known distribution functions are discussed in this article.  相似文献   

13.
ABSTRACT

In this article, a two-parameter generalized inverse Lindley distribution capable of modeling a upside-down bathtub-shaped hazard rate function is introduced. Some statistical properties of proposed distribution are explicitly derived here. The method of maximum likelihood, least square, and maximum product spacings are used for estimating the unknown model parameters and also compared through the simulation study. The approximate confidence intervals, based on a normal and a log-normal approximation, are also computed. Two algorithms are proposed for generating a random sample from the proposed distribution. A real data set is modeled to illustrate its applicability, and it is shown that our distribution fits much better than some other existing inverse distributions.  相似文献   

14.
For testing separate families of hypotheses, the likelihood ratio test does not have the usual asymptotic properties. This paper considers the asymptotic distribution of the ratio of maximized likelihoods (RML) statistic in the special case of testing separate scale or location-scale families of distributions. We derive saddlepoint approximations to the density and tail probabilities of the log of the RML statistic. These approximations are based on the expansion of the log of the RML statistic up to the second order, which is shown not to depend on the location and scale parameters. The resulting approximations are applied in several cases, including normal versus Laplace, normal versus Cauchy, and Weibull versus log-normal. Our results show that the saddlepoint approximations are satisfactory, even for fairly small sample sizes, and are more accurate than normal approximations and Edgeworth approximations, especially for tail probabilities that are the values of main interest in hypothesis testing problems.  相似文献   

15.
Generalized exponential distribution has been used quite effectively to model positively skewed lifetime data as an alternative to the well known Weibull or gamma distributions. In this paper we introduce an absolute continuous bivariate generalized exponential distribution by using a simple transformation from a well known bivariate exchangeable distribution. The marginal distributions of the proposed bivariate generalized exponential distributions are generalized exponential distributions. The joint probability density function and the joint cumulative distribution function can be expressed in closed forms. It is observed that the proposed bivariate distribution can be obtained using Clayton copula with generalized exponential distribution as marginals. We derive different properties of this new distribution. It is a five-parameter distribution, and the maximum likelihood estimators of the unknown parameters cannot be obtained in closed forms. We propose some alternative estimators, which can be obtained quite easily, and they can be used as initial guesses to compute the maximum likelihood estimates. One data set has been analyzed for illustrative purposes. Finally we propose some generalization of the proposed model.  相似文献   

16.
For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum–Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set.  相似文献   

17.
The generalized gamma distribution is a flexible and attractive distribution because it incorporates several well-known distributions, i.e., gamma, Weibull, Rayleigh, and Maxwell. This article derives saddlepoint density and distribution functions for the ratio of two linear functions of generalized gamma variables and the product of n independent generalized gamma variables. Simulation studies are used to evaluate the accuracy of the saddlepoint approximations. The saddlepoint approximations are fast, easy, and very accurate.  相似文献   

18.
The multivariate log-normal distribution is a good candidate to describe data that are not only positive and skewed, but also contain many characteristic values. In this study, we apply the generalized variable method to compare the mean vectors of two independent multivariate log-normal populations that display heteroscedasticity. Two generalized pivotal quantities are derived for constructing the generalized confidence region and for testing the difference between two mean vectors. Simulation results indicate that the proposed procedures exhibit satisfactory performance regardless of the sample sizes and heteroscedasticity. The type I error rates obtained are consistent with expectations and the coverage probabilities are close to the nominal level when compared with the other method which is currently available. These features make the proposed method a worthy alternative for inferential analysis of problems involving multivariate log-normal means. The results are illustrated using three examples.  相似文献   

19.
The generalized gamma distribution includes the exponential distribution, the gamma distribution, and the Weibull distribution as special cases. It also includes the log-normal distribution in the limit as one of its parameters goes to infinity. Prentice (1974) developed an estimation method that is effective even when the underlying distribution is nearly log-normal. He reparameterized the density function so that it achieved the limiting case in a smooth fashion relative to the new parameters. He also gave formulas for the second partial derivatives of the log-density function to be used in the nearly log-normal case. His formulas included infinite summations, and he did not estimate the error in approximating these summations.

We derive approximations for the log-density function and moments of the generalized gamma distribution that are smooth in the nearly log-normal case and involve only finite summations. Absolute error bounds for these approximations are included. The approximation for the first moment is applied to the problem of estimating the parameters of a generalized gamma distribution under the constraint that the distribution have mean one. This enables the development of a correspondence between the parameters in a mean one generalized gamma distribution and certain parameters in acoustic scattering theory.  相似文献   

20.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号