首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. A real data application is described to show its superior performance versus at least that of 15 of the known lifetime models.  相似文献   

2.
In this paper, we introduce a new lifetime distribution by compounding exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley (EPL) distribution. A practical situation where the EPL distribution is most appropriate for modelling lifetime data than exponential–geometric, exponential–Poisson and exponential–logarithmic distributions is presented. We obtain the density and failure rate of the EPL distribution and properties such as mean lifetime, moments, order statistics and Rényi entropy. Furthermore, estimation by maximum likelihood and inference for large samples are discussed. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.  相似文献   

3.
Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. Two real data applications are described to show superior performance versus some known lifetime models.  相似文献   

4.
We propose a new class of distributions called the exponentiated G geometric family motivated mainly by lifetime issues which can generate several lifetime models discussed in the literature. Some mathematical properties of the new family including asymptotes and shapes, moments, quantile and generating functions, extreme values and order statistics are fully investigated. We propose the log-exponentiated Weibull geometric and log-exponentiated log-logistic geometric regression models to cope with censored data. The model parameters are estimated by maximum likelihood. Three examples with real data expose quite well the new family.  相似文献   

5.
In this paper, the researchers attempt to introduce a new generalization of the Weibull-geometric distribution. The failure rate function of the new model is found to be increasing, decreasing, upside-down bathtub, and bathtub-shaped. The researchers obtained the new model by compounding Weibull distribution and discrete generalized exponential distribution of a second type, which is a generalization of the geometric distribution. The new introduced model contains some previously known lifetime distributions as well as a new one. Some basic distributional properties and moments of the new model are discussed. Estimation of the parameters is illustrated and the model with two known real data sets is examined.  相似文献   

6.
We introduce two new general families of continuous distributions, generated by a distribution F and two positive real parameters α and β which control the skewness and tail weight of the distribution. The construction is motivated by the distribution of k-record statistics and can be derived by applying the inverse probability integral transformation to the log-gamma distribution. The introduced families are suitable for modelling the data with a significantly skewed and heavy-tailed distribution. Various properties of the introduced families are studied and a number of estimations and data fitness on real data are given to illustrate the results.  相似文献   

7.
A new four-parameter distribution is introduced. It appears to be a distribution allowing for and only allowing for monotonically increasing, bathtub-shaped and upside down bathtub-shaped hazard rates. It contains as particular cases many of the known lifetime distributions. Some mathematical properties of the new distribution, including estimation procedures by the method of maximum likelihood are derived. Some simulations are run to assess the performance of the maximum-likelihood estimators. Finally, the flexibility of the new distribution is illustrated using a real data set.  相似文献   

8.
In this paper, we proposed a new family of distributions namely exponentiated exponential–geometric (E2G) distribution. The E2G distribution is a straightforwardly generalization of the exponential–geometric (EG) distribution proposed by Adamidis and Loukas [A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], which accommodates increasing, decreasing and unimodal hazard functions. It arises on a latent competing risk scenarios, where the lifetime associated with a particular risk is not observable but only the minimum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its survival and hazard functions, moments, rth moment of the ith order statistic, mean residual lifetime and modal value. Maximum-likelihood inference is implemented straightforwardly. From a mis-specification simulation study performed in order to assess the extent of the mis-specification errors when testing the EG distribution against the E2G, and we observed that it is usually possible to discriminate between both distributions even for moderate samples with presence of censoring. The practical importance of the new distribution was demonstrated in three applications where we compare the E2G distribution with several lifetime distributions.  相似文献   

9.
ABSTRACT

The binomial exponential 2 (BE2) distribution was proposed by Bakouch et al. as a distribution of a random sum of independent exponential random variables, when the sample size has a zero truncated binomial distribution. In this article, we introduce a generalization of BE2 distribution which offers a more flexible model for lifetime data than the BE2 distribution. The hazard rate function of the proposed distribution can be decreasing, increasing, decreasing–increasing–decreasing and unimodal, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties and parameters estimation of the distribution are investigated. Three different algorithms are proposed for generating random data from the new distribution. Two real data applications regarding the strength data and Proschan's air-conditioner data are used to show that the new distribution is better than the BE2 distribution and some other well-known distributions in modeling lifetime data.  相似文献   

10.
The introduction of shape parameters into statistical distributions provided flexible models that produced better fit to experimental data. The Weibull and gamma families are prime examples wherein shape parameters produce more reliable statistical models than standard exponential models in lifetime studies. In the presence of many independent gamma populations, one may test equality (or homogeneity) of shape parameters. In this article, we develop two tests for testing shape parameters of gamma distributions using chi-square distributions, stochastic majorization, and Schur convexity. The first one tests hypotheses on the shape parameter of a single gamma distribution. We numerically examine the performance of this test and find that it controls Type I error rate for small samples. To compare shape parameters of a set of independent gamma populations, we develop a test that is unbiased in the sense of Schur convexity. These tests are motivated by the need to have simple, easy to use tests and accurate procedures in case of small samples. We illustrate the new tests using three real datasets taken from engineering and environmental science. In addition, we investigate the Bayes’ factor in this context and conclude that for small samples, the frequentist approach performs better than the Bayesian approach.  相似文献   

11.
The exponential–Poisson (EP) distribution with scale and shape parameters β>0 and λ∈?, respectively, is a lifetime distribution obtained by mixing exponential and zero-truncated Poisson models. The EP distribution has been a good alternative to the gamma distribution for modelling lifetime, reliability and time intervals of successive natural disasters. Both EP and gamma distributions have some similarities and properties in common, for example, their densities may be strictly decreasing or unimodal, and their hazard rate functions may be decreasing, increasing or constant depending on their shape parameters. On the other hand, the EP distribution has several interesting applications based on stochastic representations involving maximum and minimum of iid exponential variables (with random sample size) which make it of distinguishable scientific importance from the gamma distribution. Given the similarities and different scientific relevance between these models, one question of interest is how to discriminate them. With this in mind, we propose a likelihood ratio test based on Cox's statistic to discriminate the EP and gamma distributions. The asymptotic distribution of the normalized logarithm of the ratio of the maximized likelihoods under two null hypotheses – data come from EP or gamma distributions – is provided. With this, we obtain the probabilities of correct selection. Hence, we propose to choose the model that maximizes the probability of correct selection (PCS). We also determinate the minimum sample size required to discriminate the EP and gamma distributions when the PCS and a given tolerance level based on some distance are before stated. A simulation study to evaluate the accuracy of the asymptotic probabilities of correct selection is also presented. The paper is motivated by two applications to real data sets.  相似文献   

12.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

13.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

14.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

15.
A new lifetime distribution is introduced based on compounding Pareto and Poisson–Lindley distributions. Several statistical properties of the distribution are established, including behavior of the probability density function and the failure rate function, heavy- and long-right tailedness, moments, the Laplace transform, quantiles, order statistics, moments of residual lifetime, conditional moments, conditional moment generating function, stress–strength parameter, Rényi entropy and Song's measure. We get maximum-likelihood estimators of the distribution parameters and investigate the asymptotic distribution of the estimators via Fisher's information matrix. Applications of the distribution using three real data sets are presented and it is shown that the distribution fits better than other related distributions in practical uses.  相似文献   

16.
In this paper, we proposed a new three-parameter long-term lifetime distribution induced by a latent complementary risk framework with decreasing, increasing and unimodal hazard function, the long-term complementary exponential geometric distribution. The new distribution arises from latent competing risk scenarios, where the lifetime associated scenario, with a particular risk, is not observable, rather we observe only the maximum lifetime value among all risks, and the presence of long-term survival. The properties of the proposed distribution are discussed, including its probability density function and explicit algebraic formulas for its reliability, hazard and quantile functions and order statistics. The parameter estimation is based on the usual maximum-likelihood approach. A simulation study assesses the performance of the estimation procedure. We compare the new distribution with its particular cases, as well as with the long-term Weibull distribution on three real data sets, observing its potential and competitiveness in comparison with some usual long-term lifetime distributions.  相似文献   

17.
For the first time, a five-parameter distribution, called the Kumaraswamy Burr XII (KwBXII) distribution, is defined and studied. The new distribution contains as special models some well-known distributions discussed in lifetime literature, such as the logistic, Weibull and Burr XII distributions, among several others. We obtain the complete moments, incomplete moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves and reliability of the KwBXII distribution. We provide two representations for the moments of the order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the KwBXII distribution. Three applications to real data sets demonstrate the usefulness of the proposed distribution and that it may attract wider applications in lifetime data analysis.  相似文献   

18.
ABSTRACT

The log-logistic distribution is commonly used to model lifetime data. We propose a wider distribution, named the exponentiated log-logistic geometric distribution, based on a double activation approach. We obtain the quantile function, ordinary moments, and generating function. The method of maximum likelihood is used to estimate the model parameters. We propose a new extended regression model based on the logarithm of the exponentiated log-logistic geometric distribution. This regression model can be very useful in the analysis of real data and could provide better fits than other special regression models. The potentiality of the new models is illustrated by means of two applications to real lifetime data sets.  相似文献   

19.
We define two new lifetime models called the odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with various hazard rate shapes such as increasing, decreasing, upside-down bathtub, and bathtub. Various structural properties are derived. Certain characterizations of OLL-L distribution are presented. The maximum likelihood estimators of the unknown parameters are obtained. We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a Poisson distribution and the time to event has an OLL-L distribution. The applicability of the new models is illustrated by means real datasets.  相似文献   

20.
In this paper, we propose a new three-parameter model called the exponential–Weibull distribution, which includes as special models some widely known lifetime distributions. Some mathematical properties of the proposed distribution are investigated. We derive four explicit expressions for the generalized ordinary moments and a general formula for the incomplete moments based on infinite sums of Meijer's G functions. We also obtain explicit expressions for the generating function and mean deviations. We estimate the model parameters by maximum likelihood and determine the observed information matrix. Some simulations are run to assess the performance of the maximum likelihood estimators. The flexibility of the new distribution is illustrated by means of an application to real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号