首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  The marginal density of a first order moving average process can be written as a convolution of two innovation densities. Saavedra & Cao [Can. J. Statist. (2000), 28, 799] propose to estimate the marginal density by plugging in kernel density estimators for the innovation densities, based on estimated innovations. They obtain that for an appropriate choice of bandwidth the variance of their estimator decreases at the rate 1/ n . Their estimator can be interpreted as a specific U -statistic. We suggest a slightly simplified U -statistic as estimator of the marginal density, prove that it is asymptotically normal at the same rate, and describe the asymptotic variance explicitly. We show that the estimator is asymptotically efficient if no structural assumptions are made on the innovation density. For innovation densities known to have mean zero or to be symmetric, we describe improvements of our estimator which are again asymptotically efficient.  相似文献   

2.
Many directional data such as wind directions can be collected extremely easily so that experiments typically yield a huge number of data points that are sequentially collected. To deal with such big data, the traditional nonparametric techniques rapidly require a lot of time to be computed and therefore become useless in practice if real time or online forecasts are expected. In this paper, we propose a recursive kernel density estimator for directional data which (i) can be updated extremely easily when a new set of observations is available and (ii) keeps asymptotically the nice features of the traditional kernel density estimator. Our methodology is based on Robbins–Monro stochastic approximations ideas. We show that our estimator outperforms the traditional techniques in terms of computational time while being extremely competitive in terms of efficiency with respect to its competitors in the sequential context considered here. We obtain expressions for its asymptotic bias and variance together with an almost sure convergence rate and an asymptotic normality result. Our technique is illustrated on a wind dataset collected in Spain. A Monte‐Carlo study confirms the nice properties of our recursive estimator with respect to its non‐recursive counterpart.  相似文献   

3.
Parametric Estimation for Subordinators and Induced OU Processes   总被引:1,自引:0,他引:1  
Abstract.  Consider a stationary sequence of random variables with infinitely divisible marginal law, characterized by its Lévy density. We analyse the behaviour of a so-called cumulant M-estimator, in case this Lévy density is characterized by a Euclidean (finite dimensional) parameter. Under mild conditions, we prove consistency and asymptotic normality of the estimator. The estimator is considered in the situation where the data are increments of a subordinator as well as the situation where the data consist of a discretely sampled Ornstein–Uhlenbeck (OU) process induced by the subordinator. We illustrate our results for the Gamma-process and the Inverse-Gaussian OU process. For these processes we also explain how the estimator can be computed numerically.  相似文献   

4.
Elliptically contoured distributions generalize the multivariate normal distributions in such a way that the density generators need not be exponential. However, as the name suggests, elliptically contoured distributions remain to be restricted in that the proportional density level sets ought to be ellipsoids. In star-shaped distributions, this restriction is relaxed and the density level sets are allowed to be boundaries of arbitrary proportional star-shaped sets. In this note, we propose a non parametric estimator of the shape of density level sets of star-shaped distributions, and prove its strong consistency with respect to the Hausdorff distance. We illustrate our estimator with simulated and real data.  相似文献   

5.
Constructing spatial density maps of seismic events, such as earthquake hypocentres, is complicated by the fact that events are not located precisely. In this paper, we present a method for estimating density maps from event locations that are measured with error. The estimator is based on the simulation–extrapolation method of estimation and is appropriate for location errors that are either homoscedastic or heteroscedastic. A simulation study shows that the estimator outperforms the standard estimator of density that ignores location errors in the data, even when location errors are spatially dependent. We apply our method to construct an estimated density map of earthquake hypocenters using data from the Alaska earthquake catalogue.  相似文献   

6.
The estimation of a multivariate function from a stationary m-dependent process is investigated, with a special focus on the case where m is large or unbounded. We develop an adaptive estimator based on wavelet methods. Under flexible assumptions on the nonparametric model, we prove the good performances of our estimator by determining sharp rates of convergence under two kinds of errors: the pointwise mean squared error and the mean integrated squared error. We illustrate our theoretical result by considering the multivariate density estimation problem, the derivatives density estimation problem, the density estimation problem in a GARCH-type model and the multivariate regression function estimation problem. The performance of proposed estimator has been shown by a numerical study for a simulated and real data sets.  相似文献   

7.
Abstract.  A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log-scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non-parametric kernel estimator for a range of densities outside the specified semiparametric class.  相似文献   

8.
This paper addresses the problem of estimating the mode of a density function based on contaminated data. Unlike conventional methods, which are based on localizing the maximum of a density estimator, we introduce a procedure which requires computation of the maximum among finitely many quantities only. We show that our estimator is strongly consistent under very weak conditions, where not even continuity of the density at the mode is required; moreover, we show that the estimator achieves optimal convergence rates under common smoothness and sharpness constraints. Some numerical simulations are provided.  相似文献   

9.
We propose a vector generalized additive modeling framework for taking into account the effect of covariates on angular density functions in a multivariate extreme value context. The proposed methods are tailored for settings where the dependence between extreme values may change according to covariates. We devise a maximum penalized log‐likelihood estimator, discuss details of the estimation procedure, and derive its consistency and asymptotic normality. The simulation study suggests that the proposed methods perform well in a wealth of simulation scenarios by accurately recovering the true covariate‐adjusted angular density. Our empirical analysis reveals relevant dynamics of the dependence between extreme air temperatures in two alpine resorts during the winter season.  相似文献   

10.
Kernel density estimation has been used with great success with data that may be assumed to be generated from independent and identically distributed (iid) random variables. The methods and theoretical results for iid data, however, do not directly apply to data from stratified multistage samples. We present finite-sample and asymptotic properties of a modified density estimator introduced in Buskirk (Proceedings of the Survey Research Methods Section, American Statistical Association (1998), pp. 799–801) and Bellhouse and Stafford (Statist. Sin. 9 (1999) 407–424); this estimator incorporates both the sampling weights and the kernel weights. We present regularity conditions which lead the sample estimator to be consistent and asymptotically normal under various modes of inference used with sample survey data. We also introduce a superpopulation structure for model-based inference that allows the population model to reflect naturally occurring clustering. The estimator, and confidence bands derived from the sampling design, are illustrated using data from the US National Crime Victimization Survey and the US National Health and Nutrition Examination Survey.  相似文献   

11.
Interval-grouped data are defined, in general, when the event of interest cannot be directly observed and it is only known to have been occurred within an interval. In this framework, a nonparametric kernel density estimator is proposed and studied. The approach is based on the classical Parzen–Rosenblatt estimator and on the generalisation of the binned kernel density estimator. The asymptotic bias and variance of the proposed estimator are derived under usual assumptions, and the effect of using non-equally spaced grouped data is analysed. Additionally, a plug-in bandwidth selector is proposed. Through a comprehensive simulation study, the behaviour of both the estimator and the plug-in bandwidth selector considering different scenarios of data grouping is shown. An application to real data confirms the simulation results, revealing the good performance of the estimator whenever data are not heavily grouped.  相似文献   

12.
We consider asymmetric kernel estimates based on grouped data. We propose an iterated scheme for constructing such an estimator and apply an iterated smoothed bootstrap approach for bandwidth selection. We compare our approach with competing methods in estimating actuarial loss models using both simulations and data studies. The simulation results show that with this new method, the estimated density from grouped data matches the true density more closely than with competing approaches.  相似文献   

13.
In this paper we propose a smooth nonparametric estimation for the conditional probability density function based on a Bernstein polynomial representation. Our estimator can be written as a finite mixture of beta densities with data-driven weights. Using the Bernstein estimator of the conditional density function, we derive new estimators for the distribution function and conditional mean. We establish the asymptotic properties of the proposed estimators, by proving their asymptotic normality and by providing their asymptotic bias and variance. Simulation results suggest that the proposed estimators can outperform the Nadaraya–Watson estimator and, in some specific setups, the local linear kernel estimators. Finally, we use our estimators for modeling the income in Italy, conditional on year from 1951 to 1998, and have another look at the well known Old Faithful Geyser data.  相似文献   

14.
In this article, we propose a nonparametric estimator for percentiles of the time-to-failure distribution obtained from a linear degradation model using the kernel density method. The properties of the proposed kernel estimator are investigated and compared with well-known maximum likelihood and ordinary least squares estimators via a simulation technique. The mean squared error and the length of the bootstrap confidence interval are used as the basis criteria of the comparisons. The simulation study shows that the performance of the kernel estimator is acceptable as a general estimator. When the distribution of the data is assumed to be known, the maximum likelihood and ordinary least squares estimators perform better than the kernel estimator, while the kernel estimator is superior when the assumption of our knowledge of the data distribution is violated. A comparison among different estimators is achieved using a real data set.  相似文献   

15.
The binary-response smoothed maximum score (SMS) estimator accommodates heteroskedasticity of an unknown form, but it may be heavily biased when the conditional error density is not differentiable or not bell shaped. We construct a new combined SMS estimator as a linear combination of individual estimators with weights chosen to minimize the trace of estimated mean squared error. This estimator is robust and rate-adaptive under weak assumptions on the density. Results of a Monte Carlo study confirm good performance of the combined estimator.  相似文献   

16.
In this paper, the kernel density estimator for negatively superadditive dependent random variables is studied. The exponential inequalities and the exponential rate for the kernel estimator of density function with a uniform version, over compact sets are investigated. Also, the optimal bandwidth rate of the estimator is obtained using mean integrated squared error. The results are generalized and used to improve the ones obtained for the case of associated sequences. As an application, FGM sequences that fulfil our assumptions are investigated. Also, the convergence rate of the kernel density estimator is illustrated via a simulation study. Moreover, a real data analysis is presented.  相似文献   

17.
When estimating loss distributions in insurance, large and small losses are usually split because it is difficult to find a simple parametric model that fits all claim sizes. This approach involves determining the threshold level between large and small losses. In this article, a unified approach to the estimation of loss distributions is presented. We propose an estimator obtained by transforming the data set with a modification of the Champernowne cdf and then estimating the density of the transformed data by use of the classical kernel density estimator. We investigate the asymptotic bias and variance of the proposed estimator. In a simulation study, the proposed method shows a good performance. We also present two applications dealing with claims costs in insurance.  相似文献   

18.
We propose an orthogonal series density estimator for complex surveys, where samples are neither independent nor identically distributed. The proposed estimator is proved to be design-unbiased and asymptotically design-consistent. The asymptotic normality is proved under both design and combined spaces. Two data driven estimators are proposed based on the proposed oracle estimator. We show the efficiency of the proposed estimators in simulation studies. A real survey data example is provided for an illustration.  相似文献   

19.
In this paper we consider the asymptotic properties of the ARCH innovation density estimator. We obtain the asymptotic normality of the Bickel-Rosenblatt test statistic (based on our density estimator) under the null hypothesis, which is the same as in the case of the one sample set up (given in Bickel and Rosenblatt, 1973). We also show the strong consistency of the estimator for the true density in L2-norm.  相似文献   

20.
Time between recurrent medical events may be correlated with the cost incurred at each event. As a result, it may be of interest to describe the relationship between recurrent events and recurrent medical costs by estimating a joint distribution. In this paper, we propose a nonparametric estimator for the joint distribution of recurrent events and recurrent medical costs in right-censored data. We also derive the asymptotic variance of our estimator, a test for equality of recurrent marker distributions, and present simulation studies to demonstrate the performance of our point and variance estimators. Our estimator is shown to perform well for a wide range of levels of correlation, demonstrating that our estimators can be employed in a variety of situations when the correlation structure may be unknown in advance. We apply our methods to hospitalization events and their corresponding costs in the second Multicenter Automatic Defibrillator Implantation Trial (MADIT-II), which was a randomized clinical trial studying the effect of implantable cardioverter-defibrillators in preventing ventricular arrhythmia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号