首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppose [^(q)]{\widehat{\theta}} is an estimator of θ in \mathbbR{\mathbb{R}} that satisfies the central limit theorem. In general, inferences on θ are based on the central limit approximation. These have error O(n −1/2), where n is the sample size. Many unsuccessful attempts have been made at finding transformations which reduce this error to O(n −1). The variance stabilizing transformation fails to achieve this. We give alternative transformations that have bias O(n −2), and skewness O(n −3). Examples include the binomial, Poisson, chi-square and hypergeometric distributions.  相似文献   

2.
This paper provides a general method of modifying a statistic of interest in such a way that the distribution of the modified statistic can be approximated by an arbitrary reference distribution to an order of accuracy of O(n -1/2) or even O(n -1). The reference distribution is usually the asymptotic distribution of the original statistic. We prove that the multiplication of the statistic by a suitable stochastic correction improves the asymptotic approximation to its distribution. This paper extends the results of the closely related paper by Cordeiro and Ferrari (1991) to cope with several other statistical tests. The resulting expression for the adjustment factor requires knowledge of the Edgeworth-type expansion to order O(n-1) for the distribution of the unmodified statistic. In practice its functional form involves some derivatives of the reference distribution. Certain difference between the cumulants of appropriate order in n of the unmodified statistic and those of its first-order approximation, and the unmodified statistic itself. Some applications are discussed.  相似文献   

3.
ABSTRACT

This article considers the empirical Bayes estimation problem in the uniform distribution U(0, θ) with censored data. For the parameter θ, using the empirical Bayes (EB) approach, we propose an EB estimation of θ which possesses a rate of convergence can be arbitrarily close to O(n ?1/2) when the historical samples are randomly censored from the right, where n is the number of historical sample. A sample and some simulation results are also presented.  相似文献   

4.
Classical saddlepoint methods, which assume that the cumulant generating function is known, result in an approximation to the distribution that achieves an error of order O(n?1). The authors give a general theorem to address the accuracy of saddlepoint approximations in which the cumulant generating function has been estimated or approximated. In practice, the resulting saddlepoint approximations are typically of the order O(n?1/2). The authors give simulation results for small sample examples to compare estimated saddlepoint approximations.  相似文献   

5.
This article studies the non null distribution of the two-sample t-statistic, or Welch statistic, under non normality. The asymptotic expansion of the non null distribution is derived up to n ?1, where n is the pooled sample size, under general conditions. It is used to compare the power with that obtained by normal theory method. A simple technique is recommended to achieve more power through a monotone transformation in practice.  相似文献   

6.
A Bayesian analysis is provided for the Wilcoxon signed-rank statistic (T+). The Bayesian analysis is based on a sign-bias parameter φ on the (0, 1) interval. For the case of a uniform prior probability distribution for φ and for small sample sizes (i.e., 6 ? n ? 25), values for the statistic T+ are computed that enable probabilistic statements about φ. For larger sample sizes, approximations are provided for the asymptotic likelihood function P(T+|φ) as well as for the posterior distribution P(φ|T+). Power analyses are examined both for properly specified Gaussian sampling and for misspecified non Gaussian models. The new Bayesian metric has high power efficiency in the range of 0.9–1 relative to a standard t test when there is Gaussian sampling. But if the sampling is from an unknown and misspecified distribution, then the new statistic still has high power; in some cases, the power can be higher than the t test (especially for probability mixtures and heavy-tailed distributions). The new Bayesian analysis is thus a useful and robust method for applications where the usual parametric assumptions are questionable. These properties further enable a way to do a generic Bayesian analysis for many non Gaussian distributions that currently lack a formal Bayesian model.  相似文献   

7.
ON THE NUMBER OF RECORDS NEAR THE MAXIMUM   总被引:3,自引:0,他引:3  
Recent work has considered properties of the number of observations Xj, independently drawn from a discrete law, which equal the sample maximum X(n) The natural analogue for continuous laws is the number Kn(a) of observations in the interval (X(n)a, X(n)], where a > 0. This paper derives general expressions for the law, first moment, and probability generating function of Kn(a), mentioning examples where evaluations can be given. It seeks limit laws for n→ and finds a central limit result when a is fixed and the population law has a finite right extremity. Whenever the population law is attracted to an extremal law, a limit theorem can be found by letting a depend on n in an appropriate manner; thus the limit law is geometric when the extremal law is the Gumbel type. With these results, the paper obtains limit laws for ‘top end’ spacings X(n) - X(n-j) with j fixed.  相似文献   

8.
Approximate confidence intervals are given for the lognormal regression problem. The error in the nominal level can be reduced to O(n ?2), where n is the sample size. An alternative procedure is given which avoids the non-robust assumption of lognormality. This amounts to finding a confidence interval based on M-estimates for a general smooth function of both ? and F, where ? are the parameters of the general (possibly nonlinear) regression problem and F is the unknown distribution function of the residuals. The derived intervals are compared using theory, simulation and real data sets.  相似文献   

9.
Consider a random sample of sizen drawn from a continuous parent distributionF. A basic and useful known property associated with such sample is the following: the conditional distribution of thej th order statistic given a valuet of thei th order statistics, (j>i), coincides with the distribution of the(j?i) th order statistic in a sample of size (n?i) drawn from the parent distributionF truncated at the left att. In this article we mention some applications of this property, and provide a new application to the construction of an Uniformly Minimum Variance Unbiased (UMVU) estimator in the case of two-truncation parameters family of distributions.  相似文献   

10.
Most of the higher-order asymptotic results in statistical inference available in the literature assume model correctness. The aim of this paper is to develop higher-order results under model misspecification. The density functions to O(n?3/2) of the robust score test statistic and the robust Wald test statistic are derived under the null hypothesis, for the scalar as well as the multiparameter case. Alternate statistics which are robust to O(n?3/2) are also proposed.  相似文献   

11.
This paper is concerned with the Bernstein estimator [Vitale, R.A. (1975), ‘A Bernstein Polynomial Approach to Density Function Estimation’, in Statistical Inference and Related Topics, ed. M.L. Puri, 2, New York: Academic Press, pp. 87–99] to estimate a density with support [0, 1]. One of the major contributions of this paper is an application of a multiplicative bias correction [Terrell, G.R., and Scott, D.W. (1980), ‘On Improving Convergence Rates for Nonnegative Kernel Density Estimators’, The Annals of Statistics, 8, 1160–1163], which was originally developed for the standard kernel estimator. Moreover, the renormalised multiplicative bias corrected Bernstein estimator is studied rigorously. The mean squared error (MSE) in the interior and mean integrated squared error of the resulting bias corrected Bernstein estimators as well as the additive bias corrected Bernstein estimator [Leblanc, A. (2010), ‘A Bias-reduced Approach to Density Estimation Using Bernstein Polynomials’, Journal of Nonparametric Statistics, 22, 459–475] are shown to be O(n?8/9) when the underlying density has a fourth-order derivative, where n is the sample size. The condition under which the MSE near the boundary is O(n?8/9) is also discussed. Finally, numerical studies based on both simulated and real data sets are presented.  相似文献   

12.
In this paper, we consider an estimation for the unknown parameters of a conditional Gaussian MA(1) model. In the majority of cases, a maximum-likelihood estimator is chosen because the estimator is consistent. However, for small sample sizes the error is large, because the estimator has a bias of O(n? 1). Therefore, we provide a bias of O(n? 1) for the maximum-likelihood estimator for the conditional Gaussian MA(1) model. Moreover, we propose new estimators for the unknown parameters of the conditional Gaussian MA(1) model based on the bias of O(n? 1). We investigate the properties of the bias, as well as the asymptotical variance of the maximum-likelihood estimators for the unknown parameters, by performing some simulations. Finally, we demonstrate the validity of the new estimators through this simulation study.  相似文献   

13.
Estimation of the prior distribution of the binomial parameter nbased on a system of orthogonal polynomials, the Poisson-Charlier polynomials, is studied. It is shown that the resulting estimator is mean squared consistent with rate O(N ε-1), where Nis the sample size and ε> 0 is arbitrarily small.  相似文献   

14.
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n ?3/2), n being the sample size. The corrections represent an improvement over the corresponding original Rao's score statistics, which are chi-squared distributed up to errors of order O(n ?1). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.  相似文献   

15.
We will consider the following problem.Maximise Φ(p)over P={p=(p1,P2,…,pj):Pj≧0,∑pj=1}". We require to calcute an optimizing distribution. Examples arise in optimal regression design,maximum likelihood estimation and stratified sazmpling problems. A class of multiplicative algorithms, indexed by functions which depend on the derivatives of Φ(·)is considered for solving this problem.Iterations are of the form:pj (r+1)αpj (r)f(xj (r)), where xj (r)=dj (r) or Fj (r)and dj (r)=?Φ/?pj While Fj (r)=Dj (r)?∑pi (r)di (r) (a directional derivative)at p=p(r)f(·)satisfies some suitable properties and may depend on one or more free parameters. These iterations neatly submit to the constraints ofv the problem. Some results will be reported and extensions to problems dependin on two or more distributions and to problems with additional constraints will be considered.  相似文献   

16.
Let {xij(1 ? j ? ni)|i = 1, 2, …, k} be k independent samples of size nj from respective distributions of functions Fj(x)(1 ? j ? k). A classical statistical problem is to test whether these k samples came from a common distribution function, F(x) whose form may or may not be known. In this paper, we consider the complementary problem of estimating the distribution functions suspected to be homogeneous in order to improve the basic estimator known as “empirical distribution function” (edf), in an asymptotic setup. Accordingly, we consider four additional estimators, namely, the restricted estimator (RE), the preliminary test estimator (PTE), the shrinkage estimator (SE), and the positive rule shrinkage estimator (PRSE) and study their characteristic properties based on the mean squared error (MSE) and relative risk efficiency (RRE) with tables and graphs. We observed that for k ? 4, the positive rule SE performs uniformly better than both shrinkage and the unrestricted estimator, while PTEs works reasonably well for k < 4.  相似文献   

17.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

18.
Book Reviews     
The Levene test is a widely used test for detecting differences in dispersion. The modified Levene transformation using sample medians is considered in this article. After Levene's transformation the data are not normally distributed, hence, nonparametric tests may be useful. As the Wilcoxon rank sum test applied to the transformed data cannot control the type I error rate for asymmetric distributions, a permutation test based on reallocations of the original observations rather than the absolute deviations was investigated. Levene's transformation is then only an intermediate step to compute the test statistic. Such a Levene test, however, cannot control the type I error rate when the Wilcoxon statistic is used; with the Fisher–Pitman permutation test it can be extremely conservative. The Fisher–Pitman test based on reallocations of the transformed data seems to be the only acceptable nonparametric test. Simulation results indicate that this test is on average more powerful than applying the t test after Levene's transformation, even when the t test is improved by the deletion of structural zeros.  相似文献   

19.
Recursive estimates fnr(x)of the rth derivative fr(x)(r=0,1)of the univariate probability density f(x) for strictly stationary processes {Xj,} are considered. The asymptotic variance-covariance of fnr(x)is established for stationary triangular arrays of random variables satisfying various asymptotic independence-uncorrelatedness conditions.  相似文献   

20.
Suppose it is desired to obtain a large number Ns of items for which individual counting is impractical, but one can demand a batch to weigh at least w units so that the number of items N in the batch may be close to the desired number Ns. If the items have mean weight ωTH, it is reasonable to have w equal to ωTHNs when ωTH is known. When ωTH is unknown, one can take a sample of size n, not bigger than Ns, estimate ωTH by a good estimator ωn, and set w equal to ωnNs. Let Rn = Kp2N2s/n + Ksn be a measure of loss, where Ke and Ks are the coefficients representing the cost of the error in estimation and the cost of the sampling respectively, and p is the coefficient of variation for the weight of the items. If one determines the sample size to be the integer closest to pCNs when p is known, where C is (Ke/Ks)1/2, then Rn will be minimized. If p is unknown, a simple sequential procedure is proposed for which the average sample number is shown to be asymptotically equal to the optimal fixed sample size. When the weights are assumed to have a gamma distribution given ω and ω has a prior inverted gamma distribution, the optimal sample size can be found to be the nonnegative integer closest to pCNs + p2A(pC – 1), where A is a known constant given in the prior distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号