首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross-validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small-sample properties compared to the bootstrap intervals. A small-sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10.  相似文献   

2.
This article describes an algorithm for the identification of outliers in multivariate data based on the asymptotic theory for location estimation as described typically for the trimmed likelihood estimator and in particular for the minimum covariance determinant estimator. The strategy is to choose a subset of the data which minimizes an appropriate measure of the asymptotic variance of the multivariate location estimator. Observations not belonging to this subset are considered potential outliers which should be trimmed. For α less than about 0.5, the correct trimming proportion is taken to be that α > 0 for which the minimum of any minima of this measure of the asymptotic variance occurs. If no minima occur for an α > 0 then the data set will be considered outlier free.  相似文献   

3.
Qualitative robustness of the β-trimmed mean has already been observed in terms of relative efficiency and weak continuity of that estimator in neighbourhoods of the exponential distribution. Two more robustness considerations are given here in favour of the β-trimmed mean: the statistical functional representing this estimator is Fréchet differentiable; and it is a special case of the trimmed likelihood estimator. Further, simulations suggest that a fixed proportion of trimming is preferable to adaptive estimation in this case.  相似文献   

4.
In this paper, the empirical likelihood method is used to define a new estimator of conditional quantile in the presence of auxiliary information for the left-truncation model. The asymptotic normality of the estimator is established when the data exhibit some kind of dependence. It is assumed that the lifetime observations with multivariate covariates form a stationary αmixing sequence. The result shows that the asymptotic variance of the proposed estimator is not larger than that of standard kernel estimator. Finite sample behavior of the estimator is investigated via simulations too.  相似文献   

5.
Exact confidence interval estimation for accelerated life regression models with censored smallest extreme value (or Weibull) data is often impractical. This paper evaluates the accuracy of approximate confidence intervals based on the asymptotic normality of the maximum likelihood estimator, the asymptotic X2distribution of the likelihood ratio statistic, mean and variance correction to the likelihood ratio statistic, and the so-called Bartlett correction to the likelihood ratio statistic. The Monte Carlo evaluations under various degrees of time censoring show that uncorrected likelihood ratio intervals are very accurate in situations with heavy censoring. The benefits of mean and variance correction to the likelihood ratio statistic are only realized with light or no censoring. Bartlett correction tends to result in conservative intervals. Intervals based on the asymptotic normality of maximum likelihood estimators are anticonservative and should be used with much caution.  相似文献   

6.
In the location-scale estimation problem, we study robustness properties of M-estimators of the scale parameter under unknown ?-contamination of a fixed symmetric unimodal error distribution F0. Within a general class of M-estimators, the estimator with minimax asymptotic bias is shown to lie within the subclass of α-interquantile ranges of the empirical distribution symmetrized about the sample median. Our main result is that as ? → 0, the limiting minimax asymptotic bias estimator is sometimes (e.g., when Fo is Cauchy), but not always, the median absolute deviation about the median. It is also shown that contamination in the neighbourhood of a discontinuity of the influence function of a minimax bias estimator can sometimes inflate the asymptotic variance beyond that achieved by placing all the ?-contamination at infinity. This effect is quantified by a new notion of asymptotic efficiency that takes into account the effect of infinitesimal contamination of the parametric model for the error distribution.  相似文献   

7.
Based on right-censored data from a lifetime distribution F0, a modification of the kernel quantile estimator is proposed. The advantage of this estimator is that the data play a role in the degree of smoothing of the estimator while retaining the desirable features of the kernel estimator. Convergence in probability and almost sure convergence of the estimator are discussed. Also, asymptotic normality and confidence bands are presented and some examples are given.  相似文献   

8.
The paper presents the essentials of the SURE model and the estimation of its parameters β and ω. Two alternative compact representations of the model are being used. The parameter β is estimated by least squares (LS), generalized least squares (GLS) and maximum likelihood (ML) (under normality). For ω two estimators are being considered, viz an LS-related estimator and a maximum likelihood estimator (under normality). Attention is being given to the study of asymptotic properties of all estimators examined. It turns out that the LS-related and ML estimators of ω follow the same asymptotic (normal) distribution. Efficiency comparisons for the various estimators of β conclude the paper.  相似文献   

9.
We consider the case 1 interval censorship model in which the survival time has an arbitrary distribution function F0 and the inspection time has a discrete distribution function G. In such a model one is only able to observe the inspection time and whether the value of the survival time lies before or after the inspection time. We prove the strong consistency of the generalized maximum-likelihood estimate (GMLE) of the distribution function F0 at the support points of G and its asymptotic normality and efficiency at what we call regular points. We also present a consistent estimate of the asymptotic variance at these points. The first result implies uniform strong consistency on [0, ∞) if F0 is continuous and the support of G is dense in [0, ∞). For arbitrary F0 and G, Peto (1973) and Tumbull (1976) conjectured that the convergence for the GMLE is at the usual parametric rate n½ Our asymptotic normality result supports their conjecture under our assumptions. But their conjecture was disproved by Groeneboom and Wellner (1992), who obtained the nonparametric rate ni under smoothness assumptions on the F0 and G.  相似文献   

10.
ABSTRACT

When a distribution function is in the max domain of attraction of an extreme value distribution, its tail can be well approximated by a generalized Pareto distribution. Based on this fact we use a moment estimation idea to propose an adapted maximum likelihood estimator for the extreme value index, which can be understood as a combination of the maximum likelihood estimation and moment estimation. Under certain regularity conditions, we derive the asymptotic normality of the new estimator and investigate its finite sample behavior by comparing with several classical or competitive estimators. A simulation study shows that the new estimator is competitive with other estimators in view of average bias, average MSE, and coefficient of variance of the new device for the optimal selection of the threshold.  相似文献   

11.
Impartial trimming procedures with respect to general ‘penalty’ functions, Φ, have been recently introduced in Cuesta-Albertos et al. (1997. Ann. Statist. 25, 553–576) in the (generalized) k-means framework. Under regularity assumptions, for real-valued samples, we obtain the asymptotic normality both of the impartial trimmed k-mean estimator (Φ(x)=x2) and of the impartial trimmed k-median estimator (Φ(x)=x).In spite of the additional complexity coming from the several groups setting, the empirical quantile methodology used in Butler (1982. Ann. Statist. 10, 197–204) for the LTS estimator (and subsequently in Tableman (1994. Statist. Probab. Lett. 19, 387–398) for the LTAD estimator) also works in our framework. Besides their relevance for the robust estimation of quantizers, our results open the possibility of considering asymptotic distribution-free tolerance regions, constituted by unions of intervals, for predicting a future observation, generalizing the idea in Butler (1982).  相似文献   

12.
For the lifetime (or negative) exponential distribution, the trimmed likelihood estimator has been shown to be explicit in the form of a β‐trimmed mean which is representable as an estimating functional that is both weakly continuous and Fréchet differentiable and hence qualitatively robust at the parametric model. It also has high efficiency at the model. The robustness is in contrast to the maximum likelihood estimator (MLE) involving the usual mean which is not robust to contamination in the upper tail of the distribution. When there is known right censoring, it may be perceived that the MLE which is the most asymptotically efficient estimator may be protected from the effects of ‘outliers’ due to censoring. We demonstrate that this is not the case generally, and in fact, based on the functional form of the estimators, suggest a hybrid defined estimator that incorporates the best features of both the MLE and the β‐trimmed mean. Additionally, we study the pure trimmed likelihood estimator for censored data and show that it can be easily calculated and that the censored observations are not always trimmed. The different trimmed estimators are compared by a modest simulation study.  相似文献   

13.
14.
In an attempt to apply robust procedures, conventional t-tables are used to approximate critical values of a Studentized t-statistic which is formed from the ratio of a trimmed mean to the square root of a suitably normed Winsorized sum of squared deviations. It is shown here that the approximation is poor if the proportion of trimming is chosen to depend on the data. Instead a data dependent alternative is given which uses adaptive trimming proportions and confidence intervals based on trimmed likelihood statistics. Resulting statistics have high efficiency at the normal model, proper coverage for confidence intervals, yet retain breakdown point one half. Average lengths of confidence intervals are competitive with those of recent Studentized confidence intervals based on the biweight over a range of underlying distributions. In addition, the adaptive trimming is used to identify potential outliers. Evidence in the form of simulations and data analysis support the new adaptive trimming approach.  相似文献   

15.
This article studies the estimation of the reliability R = P[Y < X] when X and Y come from two independent generalized logistic distributions of Type-II with different parameters, based on progressively Type-II censored samples. When the common scale parameter is unknown, the maximum likelihood estimator and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique have been proposed too. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are extracted. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real dataset is given for illustrative purposes. Finally, methods are extended for proportional hazard rate models.  相似文献   

16.
This paper considers the problem of estimating the probability P = Pr(X < Y) when X and Y are independent exponential random variables with unequal scale parameters and a common location parameter. Uniformly minimum variance unbiased estimator of P is obtained. The asymptotic distribution of the maximum likelihood estimator is obtained and then the asymptotic equivalence of the two estimators is established. Performance of the two estimators for moderate sample sizes is studied by Monte Carlo simulation. An approximate interval estimator is also obtained.  相似文献   

17.
We propose a strongly root-n consistent simulation-based estimator for the generalized linear mixed models. This estimator is constructed based on the first two marginal moments of the response variables, and it allows the random effects to have any parametric distribution (not necessarily normal). Consistency and asymptotic normality for the proposed estimator are derived under fairly general regularity conditions. We also demonstrate that this estimator has a bounded influence function and that it is robust against data outliers. A bias correction technique is proposed to reduce the finite sample bias in the estimation of variance components. The methodology is illustrated through an application to the famed seizure count data and some simulation studies.  相似文献   

18.
This article deals with the estimation of the stress-strength parameter R = P(Y < X) when X and Y are independent Lindley random variables with different shape parameters. The uniformly minimum variance unbiased estimator has explicit expression, however, its exact or asymptotic distribution is very difficult to obtain. The maximum likelihood estimator of the unknown parameter can also be obtained in explicit form. We obtain the asymptotic distribution of the maximum likelihood estimator and it can be used to construct confidence interval of R. Different parametric bootstrap confidence intervals are also proposed. Bayes estimator and the associated credible interval based on independent gamma priors on the unknown parameters are obtained using Monte Carlo methods. Different methods are compared using simulations and one data analysis has been performed for illustrative purposes.  相似文献   

19.
Simultaneous robust estimates of location and scale parameters are derived from minimizing a minimum-distance criterion function. The criterion function measures the squared distance between the pth power (p > 0) of the empirical distribution function and the pth power of the imperfectly determined model distribution function over the real line. We show that the estimator is uniquely defined, is asymptotically bivariate normal and for p > 0.3 has positive breakdown. If the scale parameter is known, when p = 0.9 the asymptotic variance (1.0436) of the location estimator for the normal model is smaller than the asymptotic variance of the Hodges-Lehmann (HL)estimator (1.0472). Efficiencies with respect to HL and maximum-likelihood estimators (MLE) are 1.0034 and 0.9582, respectively. Similarly, if the location parameter is known, when p = 0.97 the asymptotic variance (0.6158) of the scale estimator is minimum. The efficiency with respect to the MLE is 0.8119. We show that the estimator can tolerate more corrupted observations at oo than at – for p < 1, and vice versa for p > 1.  相似文献   

20.
Conditions ensuring the asymptotic normality of U-statistics based on either trimmed samples or Winsorized samples are well known [P. Janssen, R. Serfling, and N. Veraverbeke, Asymptotic normality of U-statistics based on trimmed samples, J. Statist. Plann. Inference 16 (1987), pp. 63–74; U-statistics on Winsorized and trimmed samples, Statist. Probab. Lett. 9 (1990), pp. 439–447]. However, the class of U-statistics has a much richer family of limiting distributions. This paper complements known results by providing general limit theorems for U-statistics based on trimmed or Winsorized samples where the limiting distribution is given in terms of multiple Ito–Wiener stochastic integrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号