首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article considers the problem of testing the null hypothesis of stochastic stationarity in time series characterized by variance shifts at some (known or unknown) point in the sample. It is shown that existing stationarity tests can be severely biased in the presence of such shifts, either oversized or undersized, with associated spurious power gains or losses, depending on the values of the breakpoint parameter and on the ratio of the prebreak to postbreak variance. Under the assumption of a serially independent Gaussian error term with known break date and known variance ratio, a locally best invariant (LBI) test of the null hypothesis of stationarity in the presence of variance shifts is then derived. Both the test statistic and its asymptotic null distribution depend on the breakpoint parameter and also, in general, on the variance ratio. Modifications of the LBI test statistic are proposed for which the limiting distribution is independent of such nuisance parameters and belongs to the family of Cramér–von Mises distributions. One such modification is particularly appealing in that it is simultaneously exact invariant to variance shifts and to structural breaks in the slope and/or level of the series. Monte Carlo simulations demonstrate that the power loss from using our modified statistics in place of the LBI statistic is not large, even in the neighborhood of the null hypothesis, and particularly for series with shifts in the slope and/or level. The tests are extended to cover the cases of weakly dependent error processes and unknown breakpoints. The implementation of the tests are illustrated using output, inflation, and exchange rate data series.  相似文献   

2.
We present a method to generalise the scope of application of group sequential tests designed for equally sized groups of normal observations with known variance. Preserving the significance levels against which standardised statistics are compared leads to tests for unequally grouped data which maintain Type I error probabilities to a high degree of accuracy. The same approach can be followed when observations have unknown variance by setting critical values for Studentised statistics at percentiles of the appropriate t-distributions. This significance level approach is equally applicable to group sequential one-sided tests and two-sided tests, possibly with early stopping permitted to accept the null hypothesis. In applications to equivalence testing, tests are required to maintain a specified power, rather than Type I error rate: such tests can be constructed by defining the standardised test statistics used in the significance level approach with respect to appropriately chosen hypotheses.  相似文献   

3.
ABSTRACT

The Mack–Wolfe test is the most frequently used non parametric procedure for the umbrella alternative problem. In this paper, modifications of the Mack–Wolfe test are proposed for both known peak and unknown peak umbrellas. The exact mean and variance of the proposed tests in the null hypothesis are also derived. We compare these tests with some of the existing tests in terms of the type I error rate and power. In addition, a real data example is presented.  相似文献   

4.
Stein's two–sample procedure for a general linear model is studied and derived in terms of matrices in which the error tems are distributed as multivatriate student t–error terms. Tests and confidence regions are constructed in a similar way to classical linear models which involves percentage points of student t and F distributions. The advantages of taking two samples are: the variance of the error terms is known, and the power of tests are size of confidence regions are controllable. A new distribution called noncentral F–type distribution different from the nencentral F is found when considerinf the power of the test of general linear hypothesis.  相似文献   

5.
A method is proposed for estimating regression parameters from data containing covariate measurement errors by using Stein estimates of the unobserved true covariates. The method produces consistent estimates for the slope parameter in the classical linear errors-in-variables model and applies to a broad range of nonlinear regression problems, provided the measurement error is Gaussian with known variance. Simulations are used to examine the performance of the estimates in a nonlinear regression problem and to compare them with the usual naive ones obtained by ignoring error and with other estimates proposed recently in the literature.  相似文献   

6.
Confidence intervals are constructed for real-valued parameter estimation in a general regression model with normal errors. When the error variance is known these intervals are optimal (in the sense of minimizing length subject to guaranteed probability of coverage) among all intervals estimates which are centered at a linear estimate of the parameter. When the error variance is unknown and the regression model is an approximately linear model (a class of models which permits bounded systematic departures from an underlying ideal model) then an independent estimate of variance is found and the intervals can then be appropriately scaled.  相似文献   

7.
We propose model-free measures for Granger causality in mean between random variables. Unlike the existing measures, ours are able to detect and quantify nonlinear causal effects. The new measures are based on nonparametric regressions and defined as logarithmic functions of restricted and unrestricted mean square forecast errors. They are easily and consistently estimated by replacing the unknown mean square forecast errors by their nonparametric kernel estimates. We derive the asymptotic normality of nonparametric estimator of causality measures, which we use to build tests for their statistical significance. We establish the validity of smoothed local bootstrap that one can use in finite sample settings to perform statistical tests. Monte Carlo simulations reveal that the proposed test has good finite sample size and power properties for a variety of data-generating processes and different sample sizes. Finally, the empirical importance of measuring nonlinear causality in mean is also illustrated. We quantify the degree of nonlinear predictability of equity risk premium using variance risk premium. Our empirical results show that the variance risk premium is a very good predictor of risk premium at horizons less than 6 months. We also find that there is a high degree of predictability at the 1-month horizon, that can be attributed to a nonlinear causal effect. Supplementary materials for this article are available online.  相似文献   

8.
For a censored two-sample problem, Chen and Wang [Y.Q. Chen and M.-C. Wang, Analysis of accelerated hazards models, J. Am. Statist. Assoc. 95 (2000), pp. 608–618] introduced the accelerated hazards model. The scale-change parameter in this model characterizes the association of two groups. However, its estimator involves the unknown density in the asymptotic variance. Thus, to make an inference on the parameter, numerically intensive methods are needed. The goal of this article is to propose a simple estimation method in which estimators are asymptotically normal with a density-free asymptotic variance. Some lack-of-fit tests are also obtained from this. These tests are related to Gill–Schumacher type tests [R.D. Gill and M. Schumacher, A simple test of the proportional hazards assumption, Biometrika 74 (1987), pp. 289–300] in which the estimating functions are evaluated at two different weight functions yielding two estimators that are close to each other. Numerical studies show that for some weight functions, the estimators and tests perform well. The proposed procedures are illustrated in two applications.  相似文献   

9.
Inference about population parameters could be improved using non- sample prior information (NSPI) from reliable sources along with the available data. This paper studies the problem of testing the intercept parameter of a simple regression model when NSPI is available on the value of the slope. The information on the slope may have the three different scenarios: (i) unknown (unspecified), (ii) known (certain or specified), and (iii) uncertain if the suspected value is unsure, for which we define the unrestricted test (UT), restricted test (RT) and pre-test test (PTT) for the intercept parameter. The test statistics, their sampling distributions, and power functions are derived. Comparison of the power functions and size of the tests are used to search and recommend a best test. The study reveals that the PTT has a reasonable dominance over the UT and RT both in terms of achieving highest power and lowest size.  相似文献   

10.
In this paper, tests for the skewness parameter of the two-piece double exponential distribution are derived when the location parameter is unknown. Classical tests like Neyman structure test and likelihood ratio test (LRT), that are generally used to test hypotheses in the presence of nuisance parameters, are not feasible for this distribution since the exact distributions of the test statistics become very complicated. As an alternative, we identify a set of statistics that are ancillary for the location parameter. When the scale parameter is known, Neyman–Pearson's lemma is used, and when the scale parameter is unknown, the LRT is applied to the joint density function of ancillary statistics, in order to obtain a test for the skewness parameter of the distribution. Test for symmetry of the distribution can be deduced as a special case. It is found that power of the proposed tests for symmetry is only marginally less than the power of corresponding classical optimum tests when the location parameter is known, especially for moderate and large sample sizes.  相似文献   

11.
The pronerties of the tests and confidence regions for the parameters in the classical general linear model depend upon the equality of the variances of the error terms. The level and power of tests and the confidence coefficients associated with confidence regions are vitiated when the assumption of equality is not true. Even when the error variances are equal the power of tests and the size of confidence regions depend upon the unknown common variance and hence are uncontrollable. This paper presents a two-stage procedure which yields tests and confidence regions which are completely independent of the variances of the errors and hence tests with controllable power and confidence regions of fixed controllable size are obtained.  相似文献   

12.
This paper considers five test statistics for comparing the recovery of a rapid growth‐based enumeration test with respect to the compendial microbiological method using a specific nonserial dilution experiment. The finite sample distributions of these test statistics are unknown, because they are functions of correlated count data. A simulation study is conducted to investigate the type I and type II error rates. For a balanced experimental design, the likelihood ratio test and the main effects analysis of variance (ANOVA) test for microbiological methods demonstrated nominal values for the type I error rate and provided the highest power compared with a test on weighted averages and two other ANOVA tests. The likelihood ratio test is preferred because it can also be used for unbalanced designs. It is demonstrated that an increase in power can only be achieved by an increase in the spiked number of organisms used in the experiment. The power is surprisingly not affected by the number of dilutions or the number of test samples. A real case study is provided to illustrate the theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The purpose of this article is to use the empirical likelihood method to study construction of the confidence region for the parameter of interest in semiparametric varying-coefficient heteroscedastic partially linear errors-in-variables models. When the variance functions of the errors are known or unknown, we propose the empirical log-likelihood ratio statistics for the parameter of interest. For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used to construct confidence regions of the parameter. A simulation study is carried out to assess the performance of the empirical likelihood method.  相似文献   

14.
The purpose of this article is to use the empirical likelihood method to study construction of the confidence region for the parameter of interest in heteroscedastic partially linear errors-in-variables model with martingale difference errors. When the variance functions of the errors are known or unknown, we propose the empirical log-likelihood ratio statistics for the parameter of interest. For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used to construct confidence regions of the parameter. A simulation study is carried out to assess the performance of the empirical likelihood method.  相似文献   

15.
For comparison of multiple outcomes commonly encountered in biomedical research, Huang et al. (2005) improved O'Brien's (1984) rank-sum tests through the replacement of the ad hoc variance by the asymptotic variance of the test statistics. The improved tests control the Type I error rate at the desired level and gain power when the differences between the two comparison groups in each outcome variable fall into the same direction. However, they may lose power when the differences are in different directions (e.g., some are positive and some are negative). These tests and the popular Bonferroni correction failed to show important significant difference when applied to compare heart rates from a clinical trial to evaluate the effect of a procedure to remove the cardioprotective solution HTK. We propose an alternative test statistic, taking the maximum of the individual rank-sum statistics, which controls the type I error and maintains satisfactory power regardless of the directions of the differences. Simulation studies show the proposed test to be of higher power than other tests in certain alternative parameter space of interest. Furthermore, when used to analyze the heart rates data the proposed test yields more satisfactory results.  相似文献   

16.
The quasi-likelihood function proposed by Wedderburn [Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method. Biometrika. 1974;61:439–447] broadened the application scope of generalized linear models (GLM) by specifying the mean and variance function instead of the entire distribution. However, in many situations, complete specification of variance function in the quasi-likelihood approach may not be realistic. Following Fahrmeir's [Maximum likelihood estimation in misspecified generalized linear models. Statistics. 1990;21:487–502] treating with misspecified GLM, we define a quasi-likelihood nonlinear models (QLNM) with misspecified variance function by replacing the unknown variance function with a known function. In this paper, we propose some mild regularity conditions, under which the existence and the asymptotic normality of the maximum quasi-likelihood estimator (MQLE) are obtained in QLNM with misspecified variance function. We suggest computing MQLE of unknown parameter in QLNM with misspecified variance function by the Gauss–Newton iteration procedure and show it to work well in a simulation study.  相似文献   

17.
18.
A semiparametric method is developed to estimate the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them using suitable empirical distribution functions. Then the dependence parameter is estimated by either maximizing a pseudolikelihood or solving an estimating equation. It is shown that this estimator is asymptotically normal, and a consistent estimator of its large sample variance is given. A simulation study shows that the proposed semiparametric method is better than the parametric ones available when the error distribution is unknown, which is almost always the case in practice. It turns out that there is no loss of asymptotic efficiency as a result of the estimation of regression parameters. An empirical example on portfolio management is used to illustrate the method.  相似文献   

19.
This paper develops a test for comparing treatment effects when observations are missing at random for repeated measures data on independent subjects. It is assumed that missingness at any occasion follows a Bernoulli distribution. It is shown that the distribution of the vector of linear rank statistics depends on the unknown parameters of the probability law that governs missingness, which is absent in the existing conditional methods employing rank statistics. This dependence is through the variance–covariance matrix of the vector of linear ranks. The test statistic is a quadratic form in the linear rank statistics when the variance–covariance matrix is estimated. The limiting distribution of the test statistic is derived under the null hypothesis. Several methods of estimating the unknown components of the variance–covariance matrix are considered. The estimate that produces stable empirical Type I error rate while maintaining the highest power among the competing tests is recommended for implementation in practice. Simulation studies are also presented to show the advantage of the proposed test over other rank-based tests that do not account for the randomness in the missing data pattern. Our method is shown to have the highest power while also maintaining near-nominal Type I error rates. Our results clearly illustrate that even for an ignorable missingness mechanism, the randomness in the pattern of missingness cannot be ignored. A real data example is presented to highlight the effectiveness of the proposed method.  相似文献   

20.
Three procedures for testing the adequacy of a proposed linear multiresponse regression model against unspecified general alternatives are considered. The model has an error structure with a matrix normal distribution which allows the vector of responses for a particular run to have an unknown covariance matrix while the responses for different runs are uncorrelated. Furthermore, each response variable may be modeled by a separate design matrix. Multivariate statistics corresponding to the classical univariate lack of fit and pure error sums of squares are defined and used to determine the multivariate lack of fit tests. A simulation study was performed to compare the power functions of the test procedures in the case of replication. Generalizations of the tests for the case in which there are no independent replicates on all responses are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号