首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop a generalized version of the two-piece skew normal distribution of Kim [On a class of two-piece skew-normal distributions, Statistics 39(6) (2005), pp. 537–553] and derive explicit expressions for its distribution function and characteristic function and discuss some of its important properties. Further estimation of the parameters of the generalized distribution is carried out.  相似文献   

2.
In this work, first some distributional properties of extended two-piece skew normal distributions are presented. Next we revisit the special case, that is two-piece skew normal distributions. Then two distributions related to two-piece skew normal distributions are studied. More precisely, we give some properties about generalized half normal distributions as well as a generalized Cauchy distribution. Finally, we discuss the distributions of linear combinations of two independent skew normal random variables.  相似文献   

3.
The skew normal distribution of Azzalini (Scand J Stat 12:171–178, 1985) has been found suitable for unimodal density but with some skewness present. Through this article, we introduce a flexible extension of the Azzalini (Scand J Stat 12:171–178, 1985) skew normal distribution based on a symmetric component normal distribution (Gui et al. in J Stat Theory Appl 12(1):55–66, 2013). The proposed model can efficiently capture the bimodality, skewness and kurtosis criteria and heavy-tail property. The paper presents various basic properties of this family of distributions and provides two stochastic representations which are useful for obtaining theoretical properties and to simulate from the distribution. Further, maximum likelihood estimation of the parameters is studied numerically by simulation and the distribution is investigated by carrying out comparative fitting of three real datasets.  相似文献   

4.
Partially linear models (PLMs) are an important tool in modelling economic and biometric data and are considered as a flexible generalization of the linear model by including a nonparametric component of some covariate into the linear predictor. Usually, the error component is assumed to follow a normal distribution. However, the theory and application (through simulation or experimentation) often generate a great amount of data sets that are skewed. The objective of this paper is to extend the PLMs allowing the errors to follow a skew-normal distribution [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178], increasing the flexibility of the model. In particular, we develop the expectation-maximization (EM) algorithm for linear regression models and diagnostic analysis via local influence as well as generalized leverage, following [H. Zhu and S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. Ser. B 63 (2001), pp. 111–126]. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, a suitable transformation is applied in a data set on ragweed pollen concentration in order to fit PLMs under asymmetric distributions. An illustrative comparison is performed between normal and skew-normal errors.  相似文献   

5.
Azzalini and Dalla Valle have recently discussed the multivariate skew normal distribution which extends the class of normal distributions by the addition of a shape parameter. The first part of the present paper examines further probabilistic properties of the distribution, with special emphasis on aspects of statistical relevance. Inferential and other statistical issues are discussed in the following part, with applications to some multivariate statistics problems, illustrated by numerical examples. Finally, a further extension is described which introduces a skewing factor of an elliptical density.  相似文献   

6.
In this note we propose a newly formulated skew exponential power distribution that behaves substantially better than previously defined versions. This new model performs very well in terms of the large sample behavior of the maximum likelihood estimation procedure when compared to the classically defined four parameter model defined by Azzalini. More recently, approaches to defining a skew exponential power distribution have used five or more parameters. Our approach improves upon previous attempts to extend the symmetric power exponential family to include skew alternatives by maintaining a minimum set of four parameters corresponding directly to location, scale, skewness and kurtosis. We illustrate the utility of our proposed model using translational and clinical data sets.  相似文献   

7.
A multimodal skewed extension of normal distribution is proposed by applying the general method as in [Huang WJ, Chen YH. Generalized skew-Cauchy distribution. Stat Probab Lett. 2007;77:1137–1147] for the construction of skew-symmetric distributions by using a trigonometric periodic skew function. Some of its distributional properties are investigated. Properties of maximum likelihood estimation of the parameters are studied numerically by simulation. The suitability of the proposed distribution in empirical data modelling is investigated by carrying out comparative fitting of two real-life data sets.  相似文献   

8.
Hea-Jung Kim 《Statistics》2013,47(5):421-441
This article develops a class of the weighted normal distributions for which the probability density function has the form of a product of a normal density and a weight function. The class constitutes marginal distributions obtained from various kinds of doubly truncated bivariate normal distributions. This class of distributions strictly includes the normal, skew–normal and two-piece skew–normal and is useful for selection modelling and inequality constrained normal mean analysis. Some distributional properties and Bayesian perspectives of the class are given. Probabilistic representation of the distributions is also given. The representation is shown to be straightforward to specify distribution and to implement computation, with output readily adapted for required analysis. Necessary theories and illustrative examples are provided.  相似文献   

9.
It is also shown that our proposed skew-normal model subsumes many other well-known skew-normal model that exists in the literature. Recent work on a new two-parameter generalized skew-normal model has received a lot of attention. This paper presents a new generalized Balakrishnan type skew–normal distribution by introducing two shape parameters. We also provide some useful results for this new generalization. It is also shown that our proposed skew–normal model subsumes the original Balakrishnan skew–normal model (2002) as well as other well–known skew–normal models as special cases. The resulting flexible model can be expected to fit a wider variety of data structures than either of the models involving a single skewing mechanism. For illustrative purposes, a famed data set on IQ scores has been used to exhibit the efficacy of the proposed model.  相似文献   

10.
A class of power series skew normal distributions is introduced by generalizing the geometric skew normal distribution of Kundu. Various mathematical properties are derived and estimation addressed by the method of maximum likelihood. The data application of Kundu [Sankhyā B, 76, 2014, 167–189] is revisited and the proposed class is shown to provide a better fit.  相似文献   

11.
The skew normal distribution family is an attractive distribution family due to its mathematical tractability and inclusion of the normal distribution as the special case. It has wide applications in many applied fields such as finance, economics, and medical research. Such a distribution family has been studied extensively since it was introduced by Azzalini in 1985 Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12:171178. [Google Scholar] for the first time. Yet, few work has been done on the study of change point problem related to this distribution family. In this article, we propose the likelihood ratio test (LRT) to detect changes in the parameters of the skew normal distribution associated with some asymptotic results of the test statistic. Simulations have been conducted under different scenarios to investigate the performance of the proposed method. Comparisons to some other existing method indicate the comparable power of the method in detecting changes in parameters of the skew normal distribution model. Applications on two real data: Brazilian and Tanzanian stock returns illustrate the detection procedure.  相似文献   

12.
S. Zheng  J. M. Hardin 《Statistics》2013,47(3):361-371
In this paper, we prove that the joint distribution of random vectors Z 1 and Z 2 and the distribution of Z 2 are skew normal provided that Z 1 is skew normally distributed and Z 2 conditioning on Z 1 is distributed as closed skew normal. Also, we extend the main results to the matrix variate case.  相似文献   

13.
An explicit closed form is derived for the characteristic function for the skew generalized t distribution studied by Arslan and Genç [The skew generalized t (SGT) distribution as the scale mixture of a skew exponential power distribution and its applications in robust estimation, Statistics 43(5) (2009), pp. 481–498]. The expression involves the Wright generalized hypergeometric Ψ–function.  相似文献   

14.
Azzalini (Scand J Stat 12:171–178, 1985) provided a methodology to introduce skewness in a normal distribution. Using the same method of Azzalini (1985), the skew logistic distribution can be easily obtained by introducing skewness to the logistic distribution. For the skew logistic distribution, the likelihood equations do not provide explicit solutions for the location and scale parameters. We present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We examine numerically the bias and variance of these estimators and show that these estimators are as efficient as the maximum likelihood estimators (MLEs). The coverage probabilities of the pivotal quantities (for location and scale parameters) based on asymptotic normality are shown to be unsatisfactory, especially when the effective sample size is small. To improve the coverage probabilities and for constructing confidence intervals, we suggest the use of simulated percentage points. Finally, we present a numerical example to illustrate the methods of inference developed here.  相似文献   

15.
We consider Bayesian inference using an extension of the family of skew-elliptical distributions studied by Azzalini [1985. A class of distributions which includes the normal ones. Scand. J. Statist. Theory and Applications 12 (2), 171–178]. This new class is referred to as bimodal skew-elliptical (BSE) distributions. The elements of the BSE class can take quite different forms. In particular, they can adopt both uni- and bimodal shapes. The bimodal case behaves similarly to mixtures of two symmetric distributions and we compare inference under the BSE family with the specific case of mixtures of two normal distributions. We study the main properties of the general class and illustrate its applications to two problems involving density estimation and linear regression.  相似文献   

16.
Debasis Kundu 《Statistics》2017,51(6):1377-1397
Azzalini [A class of distributions which include the normal. Scand J Stat. 1985;12:171–178] introduced a skew-normal distribution of which normal distribution is a special case. Recently, Kundu [Geometric skew normal distribution. Sankhya Ser B. 2014;76:167–189] introduced a geometric skew-normal distribution and showed that it has certain advantages over Azzalini's skew-normal distribution. In this paper we discuss about the multivariate geometric skew-normal (MGSN) distribution. It can be used as an alternative to Azzalini's skew-normal distribution. We discuss different properties of the proposed distribution. It is observed that the joint probability density function of the MGSN distribution can take a variety of shapes. Several characterization results have been established. Generation from an MGSN distribution is quite simple, hence the simulation experiments can be performed quite easily. The maximum likelihood estimators of the unknown parameters can be obtained quite conveniently using the expectation–maximization (EM) algorithm. We perform some simulation experiments and it is observed that the performances of the proposed EM algorithm are quite satisfactory. Furthermore, the analyses of two data sets have been performed, and it is observed that the proposed methods and the model work very well.  相似文献   

17.
A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.  相似文献   

18.
Skew scale mixtures of normal distributions are often used for statistical procedures involving asymmetric data and heavy-tailed. The main virtue of the members of this family of distributions is that they are easy to simulate from and they also supply genuine expectation-maximization (EM) algorithms for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models and we develop diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach cannot be used to obtain measures of local influence. The EM-type algorithm has been discussed with an emphasis on the skew Student-t-normal, skew slash, skew-contaminated normal and skew power-exponential distributions. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

19.
Emrah Altun 《Statistics》2019,53(2):364-386
In this paper, we introduce a new distribution, called generalized Gudermannian (GG) distribution, and its skew extension for GARCH models in modelling daily Value-at-Risk (VaR). Basic structural properties of the proposed distribution are obtained including probability density and cumulative distribution functions, moments, and stochastic representation. The maximum likelihood method is used to estimate unknown parameters of the proposed model and finite sample performance of maximum likelihood estimates are evaluated by means of Monte-Carlo simulation study. The real data application on Nikkei 225 index is given to demonstrate the performance of GARCH model specified under skew extension of GG innovation distribution against normal, Student's-t, skew normal and generalized error and skew generalized error distributions in terms of the accuracy of VaR forecasts. The empirical results show that the GARCH model with GG innovation distribution produces the most accurate VaR forecasts for all confidence levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号