共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Statistical Computation and Simulation》2012,82(4):517-528
In this article, a generalized restricted difference-based ridge estimator is defined for the vector parameter in a partial linear model when the errors are dependent. It is suspected that some additional linear constraints may hold on to the whole parameter space. The estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. The risk functions of the proposed estimators are derived under balanced loss function. Finally, the performance of the new estimators is evaluated by a simulated data set. 相似文献
2.
In this paper the conditions under which a broad class of Stein-type estimators dominates the best invariant unbiased estimator of the mean of an elliptically contoured population have been established. The superiority conditions are derived for both known and unknown scale structures. Also an example is given when the general scale matrix is assumed to be known in linear regression. 相似文献
3.
In the linear regression model with elliptical errors, a shrinkage ridge estimator is proposed. In this regard, the restricted ridge regression estimator under sub-space restriction is improved by incorporating a general function which satisfies Taylor’s series expansion. Approximate quadratic risk function of the proposed shrinkage ridge estimator is evaluated in the elliptical regression model. A Monte Carlo simulation study and analysis based on a real data example are considered for performance analysis. It is evident from the numerical results that the shrinkage ridge estimator performs better than both unrestricted and restricted estimators in the multivariate t-regression model, for some specific cases. 相似文献
4.
ABSTRACTIn this paper, shrinkage ridge estimator and its positive part are defined for the regression coefficient vector in a partial linear model. The differencing approach is used to enjoy the ease of parameter estimation after removing the non parametric part of the model. The exact risk expressions in addition to biases are derived for the estimators under study and the region of optimality of each estimator is exactly determined. The performance of the estimators is evaluated by simulated as well as real data sets. 相似文献
5.
Jibo Wu 《Statistics》2016,50(6):1363-1375
Tabakan and Akdeniz [Difference-based ridge estimator of parameters in partial linear model. Statist Pap. 2010;51(2):357–368] proposed a difference-based ridge estimator (DBRE) in the partial linear model. In this paper, a new estimator is introduced by jackknifing the DBRE that Tabakan and Akdeniz presented. We investigate the performance of this new estimator over the DBRE and difference-based estimator introduced by Yatchew [An elementary estimator of the partial linear model. Econom Lett. 1997;57:135–143] in terms of mean-squared error and mean-squared error matrix and a numerical example is provided to demonstrate the performance of the estimators. 相似文献
6.
A modified double stage shrinkage estimator has been proposed for the single parameter θ of a distribution function Fθ. It is shown to be locally better in comparison to the usual double stage shrinkage estimator in the sense of smaller mean squared error in a certain neighbourhood of prior estimate θo of θ. 相似文献
7.
基于一些随机样本,在Linex损失下估计期望及方差阵都未知的多元正态分布的熵。在仅依赖于|S|的估计类中,熵的最优仿射同变估计δc*是可容许估计,但在一些范围更大的估计类中,δc*是不可容许估计。文章首先用Stein型估计δ?ST去改进δc*,但Stein型估计不是光滑的,然后用具有光滑性的Brester-Zidek型估计去改进δc*,进一步研究知Brester-Zidek估计是可容许估计,也是Bayes估计。 相似文献
8.
For the regression model y=X β+ε where the errors follow the elliptically contoured distribution, we consider the least squares, restricted least squares, preliminary test, Stein-type shrinkage and positive-rule shrinkage estimators for the regression parameters, β. We compare the quadratic risks of the estimators to determine the relative dominance properties of the five estimators. 相似文献
9.
Zacharias Psarasakis 《Econometric Reviews》1999,18(3):331-336
This note considers how hypotheses of invariance and super exogeneity may be formulated and tested in elliptical linear regression models. It is demonstrated that for jointly elliptical random variables super exogeneity will only hold under normality. 相似文献
10.
Jibo Wu 《统计学通讯:理论与方法》2018,47(12):2979-2987
This paper discusses the parameter estimation in a partially linear model. We proposed a difference-based Liu-type estimator of the unknown parameters in the partially linear model. The asymptotically properties of the proposed estimator are discussed. We propose a iterative method to choose the biasing parameters. Finally, a simulation study and a numerical example are presented to explain the performance of the estimators. 相似文献
11.
Esra Akdeniz Duran 《Journal of Statistical Computation and Simulation》2013,83(5):810-824
The paper introduces a new difference-based Liu estimator β?Ldiff=([Xtilde]′[Xtilde]+I)?1([Xtilde]′[ytilde]+η β?diff) of the regression parameters β in the semiparametric regression model, y=Xβ+f+?. Difference-based estimator, β?diff=([Xtilde]′[Xtilde])?1[Xtilde]′[ytilde] and difference-based Liu estimator are analysed and compared with respect to mean-squared error (mse) criterion. Finally, the performance of the new estimator is evaluated for a real data set. Monte Carlo simulation is given to show the improvement in the scalar mse of the estimator. 相似文献
12.
Gülin Tabakan 《Statistics》2013,47(2):329-347
In this paper, we consider a commonly used partially linear model. We proposed a restricted difference-based ridge estimator for the vector of parameters β in a partially linear model with one smoothing term when additional linear restrictions on the parameter vector are assumed to hold. The ideas in the paper are illustrated in a real data set and in a Monte Carlo simulation study. 相似文献
13.
14.
The admissibility results of Rao (1976), proved in the context of a nonsingular covariance matrix, are exteneded to the situation where the covariance matrix is singular. Admi.s s Lb Le linear estimators in the Gauss-Markoff model are characterized and admis-sibility of the best linear unbiased estimator is investigated. 相似文献
15.
Jibo Wu 《统计学通讯:理论与方法》2013,42(5):1453-1458
ABSTRACTIn this article, we discuss the superiority of r-k class estimator over some estimators in a misspecified linear model. We derive the necessary and sufficient conditions for the superiority of the r-k class estimator over each of these estimators under the Mahalanobis loss function by the average loss criterion in the misspecified linear model. 相似文献
16.
Hidehiko Kamiya 《统计学通讯:理论与方法》2019,48(12):3092-3104
Elliptically contoured distributions generalize the multivariate normal distributions in such a way that the density generators need not be exponential. However, as the name suggests, elliptically contoured distributions remain to be restricted in that the proportional density level sets ought to be ellipsoids. In star-shaped distributions, this restriction is relaxed and the density level sets are allowed to be boundaries of arbitrary proportional star-shaped sets. In this note, we propose a non parametric estimator of the shape of density level sets of star-shaped distributions, and prove its strong consistency with respect to the Hausdorff distance. We illustrate our estimator with simulated and real data. 相似文献
17.
Partially linear additive model is useful in statistical modelling as a multivariate nonparametric fitting technique. This paper considers statistical inference for the semiparametric model in the presence of multicollinearity. Based on the profile least-squares (PL) approach and Liu estimation method, we propose a PL Liu estimator for the parametric component. When some additional linear restrictions on the parametric component are available, the corresponding restricted Liu estimator for the parametric component is constructed. The properties of the proposed estimators are derived. Some simulations are conducted to assess the performance of the proposed procedures and the results are satisfactory. Finally, a real data example is analysed. 相似文献
18.
The purpose of this note is to give a correct proof of a result in Rojo (1987). Let 2 be the mean of a random sample of size n from a normal 2 distribution with unknown mean 0 and known variance o . Following earlier work by Zellner (1986), Rojo (1987) considered the admissibility of the linear estimator c; + d relative to Variants (1975) asymmetric LINEX loss function 相似文献
19.
When a scale matrix satisfies certain conditions, the orthant probability of the elliptically contoured distribution with the scale matrix is expressed as the same probability of the equicorrelated normal distribution. 相似文献
20.
Linearly admissible estimators on linear functions of regression coefficient are studied in a singular linear model and balanced loss when the design matrix has not full column rank. The sufficient and necessary conditions for linear estimators to be admissible are obtained respectively in homogeneous and inhomogeneous classes. 相似文献