首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Let X1, X2, … be a strictly stationary sequence of observations, and g be the joint density of (X1, …, Xd) for some fixed d ? 1. We consider kernel estimators of the density g. The asymptotic behaviour of the mean integrated squared error of the kernel estimators is obtained under an assumption of weak dependence between the observations.  相似文献   

4.
5.
Let f(x) and g(x) denote two probability density functions and g(x)≠0. There are two ways to estimate the density ratio f(x)/g(x). One is to estimate f(x) and g(x) first and then the ratio, the other is to estimate f(x)/g(x) directly. In this paper, we derive asymptotic mean square errors and central limit theorems for both estimators.  相似文献   

6.
There are several levels of sophistication when specifying the bandwidth matrix H to be used in a multivariate kernel density estimator, including H to be a positive multiple of the identity matrix, a diagonal matrix with positive elements or, in its most general form, a symmetric positive‐definite matrix. In this paper, the author proposes a data‐based method for choosing the smoothing parametrization to be used in the kernel density estimator. The procedure is fully illustrated by a simulation study and some real data examples. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

7.
In this paper, we study asymptotic normality of the kernel estimators of the density function and its derivatives as well as the mode in the randomly right censorship model. The mode estimator is defined as the random variable that maximizes the kernel density estimator. Our results are stated under some suitable conditions upon the kernel function, the smoothing parameter and both distributions functions that appear in this model. Here, the Kaplan–Meier estimator of the distribution function is used to build the estimates. We carry out a simulation study which shows how good the normality works.  相似文献   

8.
9.
It is already known that the convolution of a bounded density with itself can be estimated at the root-n rate using the two asymptotically equivalent kernel estimators: (i) Frees estimator ( Frees, 1994) and (ii) Saavedra and Cao estimator ( Saavedra and Cao, 2000). In this work, we investigate the efficiency of these estimators of the convolution of a bounded density. The efficiency criterion used in this work is that of a least dispersed regular estimator described in Begun et al. (1983). This concept is based on the Hájek–Le Cam convolution theorem for locally asymptotically normal (LAN) families.  相似文献   

10.
Summary. Local likelihood methods enjoy advantageous properties, such as good performance in the presence of edge effects, that are rarely found in other approaches to nonparametric density estimation. However, as we argue in this paper, standard kernel methods can have distinct advantages when edge effects are not present. We show that, whereas the integrated variances of the two methods are virtually identical, the integrated squared bias of a conventional kernel estimator is less than that of a local log-linear estimator by as much as a factor of 4. Moreover, the greatest bias improvements offered by kernel methods occur when they are needed most—i.e. when the effect of bias is particularly high. Similar comparisons can also be made when high degree local log-polynomial fits are assessed against high order kernel methods. For example, although (as is well known) high degree local polynomial fits offer potentially infinite efficiency gains relative to their kernel competitors, the converse is also true. Indeed, the asymptotic value of the integrated squared bias of a local log-quadratic estimator can exceed any given constant multiple of that for the competing kernel method. In all cases the densities that suffer problems in the context of local log-likelihood methods can be chosen to be symmetric, either unimodal or bimodal, either infinitely or compactly supported, and to have arbitrarily many derivatives as functions on the real line. They are not pathological. However, our results reveal quantitative differences between global performances of local log-polynomial estimators applied to unimodal or multimodal distributions.  相似文献   

11.
We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence of [Formula: See Text] at a fixed point t if the density has a negative derivative at t. The same rate is obtained by a kernel estimator of bandwidth [Formula: See Text], but the limit distributions are different. If the density is both differentiable at t and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence [Formula: See Text], and compare the limit distributions of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behaviour of a kernel estimator with a bandwidth larger than [Formula: See Text], in the case that the density is known to have more than one derivative.  相似文献   

12.
Since its introduction, the pointwise asymptotic properties of the kernel estimator f?n of a probability density function f on ?d, as well as the asymptotic behaviour of its integrated errors, have been studied in great detail. Its weak convergence in functional spaces, however, is a more difficult problem. In this paper, we show that if fn(x)=(f?n(x)) and (rn) is any nonrandom sequence of positive real numbers such that rn/√n→0 then if rn(f?n?fn) converges to a Borel measurable weak limit in a weighted Lp space on ?d, with 1≤p<∞, the limit must be 0. We also provide simple conditions for proving or disproving the existence of this Borel measurable weak limit.  相似文献   

13.
We investigate the asymptotic behaviour of binned kernel density estimators for dependent and locally non-stationary random fields converging to stationary random fields. We focus on the study of the bias and the asymptotic normality of the estimators. A simulation experiment conducted shows that both the kernel density estimator and the binned kernel density estimator have the same behavior and both estimate accurately the true density when the number of fields increases. We apply our results to the 2002 incidence rates of tuberculosis in the departments of France.  相似文献   

14.
15.
The asymptotic normality of the Nadaraya–Watson regression estimator is studied for α-mixingα-mixing random fields. The infill-increasing setting is considered, that is when the locations of observations become dense in an increasing sequence of domains. This setting fills the gap between continuous and discrete models. In the infill-increasing case the asymptotic normality of the Nadaraya–Watson estimator holds, but with an unusual asymptotic covariance structure. It turns out that this covariance structure is a combination of the covariance structures that we observe in the discrete and in the continuous case.  相似文献   

16.
We consider regularizations by convolution of the empirical process and study the asymptotic behaviour of non-linear functionals of this process. Using a result for the same type of non-linear functionals of the Brownian bridge, shown in a previous paper [4], and a strong approximation theorem, we prove several results for the p-deviation in estimation of the derivatives of the density. We also study the asymptotic behaviour of the number of crossings of the smoothed empirical process defined by Yukich [17] and of a modified version of the Kullback deviation.  相似文献   

17.
18.
In this paper we consider the asymptotic properties of the ARCH innovation density estimator. We obtain the asymptotic normality of the Bickel-Rosenblatt test statistic (based on our density estimator) under the null hypothesis, which is the same as in the case of the one sample set up (given in Bickel and Rosenblatt, 1973). We also show the strong consistency of the estimator for the true density in L2-norm.  相似文献   

19.
This article proposes computing sensitivities of upper tail probabilities of random sums by the saddlepoint approximation. The considered sensitivity is the derivative of the upper tail probability with respect to the parameter of the summation index distribution. Random sums with Poisson or Geometric distributed summation indices and Gamma or Weibull distributed summands are considered. The score method with importance sampling is considered as an alternative approximation. Numerical studies show that the saddlepoint approximation and the method of score with importance sampling are very accurate. But the saddlepoint approximation is substantially faster than the score method with importance sampling. Thus, the suggested saddlepoint approximation can be conveniently used in various scientific problems.  相似文献   

20.
The main purpose of this paper is to investigate the strong approximation of the integrated empirical process. More precisely, we obtain the exact rate of the approximations by a sequence of weighted Brownian bridges and a weighted Kiefer process. Our arguments are based in part on the Komlós et al. (1975 Komlós, J., Major, P., Tusnády, G. (1975). An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32:111131.[Crossref], [Web of Science ®] [Google Scholar])'s results. Applications include the two-sample testing procedures together with the change-point problems. We also consider the strong approximation of the integrated empirical process when the parameters are estimated. Finally, we study the behavior of the self-intersection local time of the partial-sum process representation of the integrated empirical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号