首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Let X 1 and X 2 be two independent random variables from normal populations Π1, Π2 with different unknown location parameters θ1 and θ2, respectively and common known scale parameter σ. Let X (2) = max (X 1, X 2) and X (1) = min (X 1, X 2). We consider the problem of estimating the location parameter θ M (or θ J ) of the selected population under the reflected normal loss function. We obtain minimax estimators of θ M and θ J . Also, we provide sufficient conditions for the inadmissibility of invariant estimators of θ M and θ J .  相似文献   

2.
Assuming that (X1, X2) has a bivariate elliptical distribution, we obtain an exact expression for the joint probability density function (pdf) as well as the corresponding conditional pdfs of X1 and X(2) ? max?{X1, X2}. The problem is motivated by an application in financial markets. Exchangeable random variables are discussed in more detail. Two special cases of the elliptical distributions that is the normal and the student’s t models are investigated. For illustrative purposes, a real data set on the total personal income in California and New York is analyzed using the results obtained. Finally, some concluding remarks and further works are discussed.  相似文献   

3.
Hamedani and Tata (1975) showed that the bivariate normal distribution is determined uniquely by any countably infinite collection of distinct linear combinations of the variables and by no finite number of them. It is shown here that this characterization of bivariate normal distribution cannot be extended to the multivariate case. More specifically, it is shown that the multivariate normality of subsets (r < n) of the normal variables X 1, X 2, …, Xn together with the normality of an infinite number of linear combinations of them do not guarantee the joint normality of these variables.  相似文献   

4.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

5.
6.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

7.
In this note, we derive the exact distribution of S by using the method of generating function and BELL polynomials, where S = X1 + X2 + ??? + Xn, and each Xi follows the negative binomial distribution with arbitrary parameters. As a particular case, we also obtain the exact distribution of the convolution of geometric random variables.  相似文献   

8.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

9.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

10.
Let (X 1, X 2) be a bivariate L p -norm generalized symmetrized Dirichlet (LpGSD) random vector with parameters α12. If p12=2, then (X 1, X 2) is a spherical random vector. The estimation of the conditional distribution of Z u *:=X 2 | X 1>u for u large is of some interest in statistical applications. When (X 1, X 2) is a spherical random vector with associated random radius in the Gumbel max-domain of attraction, the distribution of Z u * can be approximated by a Gaussian distribution. Surprisingly, the same Gaussian approximation holds also for Z u :=X 2| X 1=u. In this paper, we are interested in conditional limit results in terms of convergence of the density functions considering a d-dimensional LpGSD random vector. Stating our results for the bivariate setup, we show that the density function of Z u * and Z u can be approximated by the density function of a Kotz type I LpGSD distribution, provided that the associated random radius has distribution function in the Gumbel max-domain of attraction. Further, we present two applications concerning the asymptotic behaviour of concomitants of order statistics of bivariate Dirichlet samples and the estimation of the conditional quantile function.  相似文献   

11.
Recent papers by Professor T. Pham-Gia derived distributions of sums, products and ratios of independent beta random variables. In this paper, we extend professor Pham-Gia's results when X 1 and X 2 are independent random variables distributed according to two generalized beta distributions. For each of these distributions, we derive exact expressions for the densities of S=X 1+X 2, D=X 1X 2, P=X 1 X 2, and R=X 2/X 1. The expressions turn out to involve the incomplete beta function as well as the hypergeometric functions of one and two variables.  相似文献   

12.
Let X(1)X(2)≤···≤X(n) be the order statistics from independent and identically distributed random variables {Xi, 1≤in} with a common absolutely continuous distribution function. In this work, first a new characterization of distributions based on order statistics is presented. Next, we review some conditional expectation properties of order statistics, which can be used to establish some equivalent forms for conditional expectations for sum of random variables based on order statistics. Using these equivalent forms, some known results can be extended immediately.  相似文献   

13.
The mixture of Rayleigh random variables X 1and X 2 are identified in terms of relations between the conditional expectation of ( X2:22 -X1:22)r{\left( {X_{2:2}^2 -X_{1:2}^2}\right)^{r}} given X 1:2 (or X2:22k{X_{2:2}^{2k}} given X1:2,"kr){X_{1:2},\forall k\leq r)} and hazard rate function of the distribution, where X 1:2 and X 2:2 denote the corresponding order statistics, r is a positive integer. In addition, we also mention some related theorems to characterize the mixtures of Rayleigh distributions. Finally, we also give an application to Multi-Hit models of carcinogenesis (Parallel Systems) and a simulated example is used to illustrate our results.  相似文献   

14.
ABSTRACT

This article considers the estimation of a distribution function FX(x) based on a random sample X1, X2, …, Xn when the sample is suspected to come from a close-by distribution F0(x). The new estimators, namely the preliminary test (PTE) and Stein-type estimator (SE) are defined and compared with the “empirical distribution function” (edf) under local departure. In this case, we show that Stein-type estimators are superior to edf and PTE is superior to edf when it is close to F0(x). As a by-product similar estimators are proposed for population quantiles.  相似文献   

15.
This note exhibits two independent random variables on integers, X1 and X2, such that neither X1 nor X2 has a generalized Poisson distribution, but X1 + X2 has. This contradicts statements made by Professor Consul in his recent book.  相似文献   

16.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

17.
Let X 1, X 2be two independent Poisson random variables with means θ 1and θ 2respectively. Assume 0 ≤ θ 1θ 2 ≤ ∞. The problem is estimation of the ordered parameters which has received considerable attention in statistical literature during the last two decades, In this paper the main portion of the study is devoted to the problem of estimating the smallest of the two ordered Poisson means, when it is known which population corresponds to each mean under the entropy loss function. An extension of the problem to the k-ordered Poisson means is also discussed.  相似文献   

18.
Let (X, Y) be a bivariate random vector whose distribution function H(x, y) belongs to the class of bivariate extreme-value distributions. If F1 and F2 are the marginals of X and Y, then H(x, y) = C{F1(x),F2(y)}, where C is a bivariate extreme-value dependence function. This paper gives the joint distribution of the random variables Z = {log F1(X)}/{log F1(X)F2(Y)} and W = C{F1{(X),F2(Y)}. Using this distribution, an algorithm to generate random variables having bivariate extreme-value distribution is présentés. Furthermore, it is shown that for any bivariate extreme-value dependence function C, the distribution of the random variable W = C{F1(X),F2(Y)} belongs to a monoparametric family of distributions. This property is used to derive goodness-of-fit statistics to determine whether a copula belongs to an extreme-value family.  相似文献   

19.
We consider n pairs of random variables (X11,X21),(X12,X22),… (X1n,X2n) having a bivariate elliptically contoured density of the form where θ1 θ2 are location parameters and Δ = ((λik)) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product-moment correlation coefficient between X1 and X2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.  相似文献   

20.
In this article, we establish some new results on stochastic comparisons of the maxima of two heterogenous gamma variables with different shape and scale parameters. Let X1 and X2 [X*1 and X*2] be two independent gamma variables with Xi?[X*i] having shape parameter ri?[r*i] and scale parameter λi?[λ*i], i = 1, 2. It is shown that the likelihood ratio order holds between the maxima, X2: 2 and X*2: 2 when λ1 = λ*1 ? λ2 = λ*2 and r1 ? r*1 ? r2 = r*2. We also prove that, if ri, r*i ∈ (0, 1], (r1, r2) majorizes (r*1, r2*), and (λ1, λ2) is p-larger than (λ*1, λ2*), then X2: 2 is larger than X*2: 2 in the sense of the hazard rate order [dispersive order]. Some numerical examples are provided to illustrate the main results. The new results established here strengthen and generalize some of the results known in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号