首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Block and Basu bivariate exponential distribution is one of the most popular absolute continuous bivariate distributions. Recently, Kundu and Gupta [A class of absolute continuous bivariate distributions. Statist Methodol. 2010;7:464–477] introduced Block and Basu bivariate Weibull (BBBW) distribution, which is a generalization of the Block and Basu bivariate exponential distribution, and provided the maximum likelihood estimators using EM algorithm. In this paper, we consider the Bayesian inference of the unknown parameters of the BBBW distribution. The Bayes estimators are obtained with respect to the squared error loss function, and the prior distributions allow for prior dependence among the unknown parameters. Prior independence also can be obtained as a special case. It is observed that the Bayes estimators of the unknown parameters cannot be obtained in explicit forms. We propose to use the importance sampling technique to compute the Bayes estimates and also to construct the associated highest posterior density credible intervals. The analysis of two data sets has been performed for illustrative purposes. The performances of the proposed estimators are quite satisfactory. Finally, we generalize the results for the multivariate case.  相似文献   

2.
A large number of models have been derived from the two-parameter Weibull distribution including the inverse Weibull (IW) model which is found suitable for modeling the complex failure data set. In this paper, we present the Bayesian inference for the mixture of two IW models. For this purpose, the Bayes estimates of the parameters of the mixture model along with their posterior risks using informative as well as the non-informative prior are obtained. These estimates have been attained considering two cases: (a) when the shape parameter is known and (b) when all parameters are unknown. For the former case, Bayes estimates are obtained under three loss functions while for the latter case only the squared error loss function is used. Simulation study is carried out in order to explore numerical aspects of the proposed Bayes estimators. A real-life data set is also presented for both cases, and parameters obtained under case when shape parameter is known are tested through testing of hypothesis procedure.  相似文献   

3.
The problem of estimating the total number of trials n in a binomial distribution is reconsidered in this article for both cases of known and unknown probability of success p from the Bayesian viewpoint. Bayes and empirical Bayes point estimates for n are proposed under the assumption of a left-truncated prior distribution for n and a beta prior distribution for p. Simulation studies are provided in this article in order to compare the proposed estimate with the most familiar n estimates.  相似文献   

4.
In this article, the Bayes estimates of two-parameter gamma distribution are considered. It is well known that the Bayes estimators of the two-parameter gamma distribution do not have compact form. In this paper, it is assumed that the scale parameter has a gamma prior and the shape parameter has any log-concave prior, and they are independently distributed. Under the above priors, we use Gibbs sampling technique to generate samples from the posterior density function. Based on the generated samples, we can compute the Bayes estimates of the unknown parameters and can also construct HPD credible intervals. We also compute the approximate Bayes estimates using Lindley's approximation under the assumption of gamma priors of the shape parameter. Monte Carlo simulations are performed to compare the performances of the Bayes estimators with the classical estimators. One data analysis is performed for illustrative purposes. We further discuss the Bayesian prediction of future observation based on the observed sample and it is seen that the Gibbs sampling technique can be used quite effectively for estimating the posterior predictive density and also for constructing predictive intervals of the order statistics from the future sample.  相似文献   

5.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

6.
This paper considers the statistical analysis for competing risks model under the Type-I progressively hybrid censoring from a Weibull distribution. We derive the maximum likelihood estimates and the approximate maximum likelihood estimates of the unknown parameters. We then use the bootstrap method to construct the confidence intervals. Based on the non informative prior, a sampling algorithm using the acceptance–rejection sampling method is presented to obtain the Bayes estimates, and Monte Carlo method is employed to construct the highest posterior density credible intervals. The simulation results are provided to show the effectiveness of all the methods discussed here and one data set is analyzed.  相似文献   

7.
In this paper, we consider the Bayesian analysis of competing risks data, when the data are partially complete in both time and type of failures. It is assumed that the latent cause of failures have independent Weibull distributions with the common shape parameter, but different scale parameters. When the shape parameter is known, it is assumed that the scale parameters have Beta–Gamma priors. In this case, the Bayes estimates and the associated credible intervals can be obtained in explicit forms. When the shape parameter is also unknown, it is assumed that it has a very flexible log-concave prior density functions. When the common shape parameter is unknown, the Bayes estimates of the unknown parameters and the associated credible intervals cannot be obtained in explicit forms. We propose to use Markov Chain Monte Carlo sampling technique to compute Bayes estimates and also to compute associated credible intervals. We further consider the case when the covariates are also present. The analysis of two competing risks data sets, one with covariates and the other without covariates, have been performed for illustrative purposes. It is observed that the proposed model is very flexible, and the method is very easy to implement in practice.  相似文献   

8.
指数族分布是一类应用广泛的分布类,包括了泊松分布、Gamma分布、Beta分布、二项分布等常见分布.在非寿险中,索赔额或索赔次数过程常常被假定服从指数族分布,由于风险的非齐次性,指数族分布中的参数θ也为随机变量,假定服从指数族共轭先验分布.此时风险参数的估计落入了Bayes框架,风险参数θ的Bayes估计被表达“信度”形式.然而,在实际运用中,由于先验分布与样本分布中仍然含有结构参数,根据样本的边际分布的似然函数估计结构参数,从而获得风险参数的经验Bayes估计,最后证明了该经验Bayes估计是渐近最优的.  相似文献   

9.
In this article, we consider Bayes prediction in a finite population under the simple location error-in-variables superpopulation model. Bayes predictor of the finite population mean under Zellner's balanced loss function and the corresponding relative losses and relative savings loss are derived. The prior distribution of the unknown location parameter of the model is assumed to have a non-normal distribution belonging to the class of Edgeworth series distributions. Effects of non normality of the “true” prior distribution and that of a possible misspecification of the loss function on the Bayes predictor are illustrated for a hypothetical population.  相似文献   

10.
This paper addresses the problem of estimating a matrix of the normal means, where the variances are unknown but common. The approach to this problem is provided by a hierarchical Bayes modeling for which the first stage prior for the means is matrix-variate normal distribution with mean zero matrix and a covariance structure and the second stage prior for the covariance is similar to Jeffreys’ rule. The resulting hierarchical Bayes estimators relative to the quadratic loss function belong to a class of matricial shrinkage estimators. Certain conditions are obtained for admissibility and minimaxity of the hierarchical Bayes estimators.  相似文献   

11.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

12.
Tne Bayes estimates of estimable parameters of arbitrary degree in the one sample case are obtained against a Dirichlet invariant. process prior and the squared error loss. We also oive the limits of Bayes estimates, which are related to the in- a- variant U-statistics. For a fixed distribution, the limits of Bayes estimates have the asymptotic normal distribution under certain conditjons.  相似文献   

13.
The maximum likelihood and Bayesian approaches for parameter estimations and prediction of future record values have been considered for the two-parameter Burr Type XII distribution based on record values with the number of trials following the record values (inter-record times). Firstly, the Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, the Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. Secondly, the Bayes estimates are obtained with respect to a discrete prior for the first shape parameter and a conjugate prior for other shape parameter. The Bayes and the maximum likelihood estimates are compared in terms of the estimated risk by the Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record arising from the Burr Type XII distribution based on record data. The comparison of the derived predictors is carried out by using Monte Carlo simulations. A real data are analysed for illustration purposes.  相似文献   

14.
In this article, we deal with a two-parameter exponentiated half-logistic distribution. We consider the estimation of unknown parameters, the associated reliability function and the hazard rate function under progressive Type II censoring. Maximum likelihood estimates (M LEs) are proposed for unknown quantities. Bayes estimates are derived with respect to squared error, linex and entropy loss functions. Approximate explicit expressions for all Bayes estimates are obtained using the Lindley method. We also use importance sampling scheme to compute the Bayes estimates. Markov Chain Monte Carlo samples are further used to produce credible intervals for the unknown parameters. Asymptotic confidence intervals are constructed using the normality property of the MLEs. For comparison purposes, bootstrap-p and bootstrap-t confidence intervals are also constructed. A comprehensive numerical study is performed to compare the proposed estimates. Finally, a real-life data set is analysed to illustrate the proposed methods of estimation.  相似文献   

15.
An empirical Bayes problem has an unknown prior to be estimated from data. The predictive recursion (PR) algorithm provides fast nonparametric estimation of mixing distributions and is ideally suited for empirical Bayes applications. This article presents a general notion of empirical Bayes asymptotic optimality, and it is shown that PR-based procedures satisfy this property under certain conditions. As an application, the problem of in-season prediction of baseball batting averages is considered. There the PR-based empirical Bayes rule performs well in terms of prediction error and ability to capture the distribution of the latent features.  相似文献   

16.
In this paper, the problem of estimating unknown parameters of a two-parameter Kumaraswamy-Exponential (Kw-E) distribution is considered based on progressively type-II censored sample. The maximum likelihood (ML) estimators of the parameters are obtained. Bayes estimates are also obtained using different loss functions such as squared error, LINEX and general entropy. Lindley's approximation method is used to evaluate these Bayes estimates. Monte Carlo simulation is used for numerical comparison between various estimates developed in this paper.  相似文献   

17.
Clayton-type counting process formulations for survival data and parametric gamma models for cluster-specific frailty quantities are now routinely applied in analyses of clustered survival data. On the other hand, although nonparametric frailty models have been studied, they are not used much in practice. In this article, the distribution of the frailty terms is assumed to be an unknown random variable. The unknown frailty distribution is then modelled completely with a Dirichlet process prior. This prior assigns cluster units into sub-classes whose members have the same random frailty effect. The Gibbs sampler algorithm is used for computing posterior parameter estimates of the fixed effect hazards regression and the frailty distribution. The methodology is used to analyze community-clustered child survival in sub-Saharan Africa. The results show that the communities could be separated into fewer distinct classes of risk of childhood mortality; the fewer classes could be studied easily in order to provide useful guidance on the more effective use of resources for child health intervention programmes.  相似文献   

18.
In this paper, we consider the Bayesian inference of the unknown parameters of the randomly censored Weibull distribution. A joint conjugate prior on the model parameters does not exist; we assume that the parameters have independent gamma priors. Since closed-form expressions for the Bayes estimators cannot be obtained, we use Lindley's approximation, importance sampling and Gibbs sampling techniques to obtain the approximate Bayes estimates and the corresponding credible intervals. A simulation study is performed to observe the behaviour of the proposed estimators. A real data analysis is presented for illustrative purposes.  相似文献   

19.
Empirical Bayes estimates of the local false discovery rate can reflect uncertainty about the estimated prior by supplementing their Bayesian posterior probabilities with confidence levels as posterior probabilities. This use of coherent fiducial inference with hierarchical models generates set estimators that propagate uncertainty to varying degrees. Some of the set estimates approach estimates from plug-in empirical Bayes methods for high numbers of comparisons and can come close to the usual confidence sets given a sufficiently low number of comparisons.  相似文献   

20.
In this article, utilizing a scale mixture of skew-normal distribution in which mixing random variable is assumed to follow a mixture model with varying weights for each observation, we introduce a generalization of skew-normal linear regression model with the aim to provide resistant results. This model, which also includes the skew-slash distribution in a particular case, allows us to accommodate and detect outlying observations under the skew-normal linear regression model. Inferences about the model are carried out through the empirical Bayes approach. The conditions for propriety of the posterior and for existence of posterior moments are given under the standard noninformative priors for regression and scale parameters as well as proper prior for skewness parameter. Then, for Bayesian inference, a Markov chain Monte Carlo method is described. Since posterior results depend on the prior hyperparameters, we estimate them adopting the empirical Bayes method as well as using a Monte Carlo EM algorithm. Furthermore, to identify possible outliers, we also apply the Bayes factor obtained through the generalized Savage-Dickey density ratio. Examining the proposed approach on simulated instance and real data, it is found to provide not only satisfactory parameter estimates rather allow identifying outliers favorably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号