首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li Yan 《Statistics》2015,49(5):978-988
Empirical likelihood inference for generalized linear models with fixed and adaptive designs is considered. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter and the resulting estimator is shown to be asymptotically normal. Some simulations are conducted to illustrate the proposed method.  相似文献   

2.
In this paper, we consider the statistical inference for the varying-coefficient partially nonlinear model with additive measurement errors in the nonparametric part. The local bias-corrected profile nonlinear least-squares estimation procedure for parameter in nonlinear function and nonparametric function is proposed. Then, the asymptotic normality properties of the resulting estimators are established. With the empirical likelihood method, a local bias-corrected empirical log-likelihood ratio statistic for the unknown parameter, and a corrected and residual adjusted empirical log-likelihood ratio for the nonparametric component are constructed. It is shown that the resulting statistics are asymptotically chi-square distribution under some suitable conditions. Some simulations are conducted to evaluate the performance of the proposed methods. The results indicate that the empirical likelihood method is superior to the profile nonlinear least-squares method in terms of the confidence regions of parameter and point-wise confidence intervals of nonparametric function.  相似文献   

3.
In this paper, we focus on the empirical likelihood (EL) inference for high-dimensional partially linear model with martingale difference errors. An empirical log-likelihood ratio statistic of unknown parameter is constructed and is shown to have asymptotically normality distribution under some suitable conditions. This result is different from those derived before. Furthermore, an empirical log-likelihood ratio for a linear combination of unknown parameter is also proposed and its asymptotic distribution is chi-squared. Based on these results, the confidence regions both for unknown parameter and a linear combination of parameter can be obtained. A simulation study is carried out to show that our proposed approach performs better than normal approximation-based method.  相似文献   

4.
This paper is concerned with statistical inference for partially nonlinear models. Empirical likelihood method for parameter in nonlinear function and nonparametric function is investigated. The empirical log-likelihood ratios are shown to be asymptotically chi-square and then the corresponding confidence intervals are constructed. By the empirical likelihood ratio functions, we also obtain the maximum empirical likelihood estimators of the parameter in nonlinear function and nonparametric function, and prove the asymptotic normality. A simulation study indicates that, compared with normal approximation-based method and the bootstrap method, the empirical likelihood method performs better in terms of coverage probabilities and average length/widths of confidence intervals/bands. An application to a real dataset is illustrated.  相似文献   

5.
This paper presents the empirical likelihood inferences for a class of varying-coefficient models with error-prone covariates. We focus on the case that the covariance matrix of the measurement errors is unknown and neither repeated measurements nor validation data are available. We propose an instrumental variable-based empirical likelihood inference method and show that the proposed empirical log-likelihood ratio is asymptotically chi-squared. Then, the confidence intervals for the varying-coefficient functions are constructed. Some simulation studies and a real data application are used to assess the finite sample performance of the proposed empirical likelihood procedure.  相似文献   

6.
利用经验似然方法,讨论缺失数据下广义线性模型中参数的置信域问题,得到了对数经验似然比统计量的渐近分布为标准卡方分布;给出参数的一些估计量及其渐近分布,利用数据模拟解释了所提出的方法。  相似文献   

7.
Xu Guo  Yiping Yang  Wangli Xu 《Statistics》2015,49(3):588-601
In this paper, we investigate the empirical-likelihood-based inference for the construction of confidence intervals and regions of the parameters of interest in single index models with missing covariates at random. An augmented inverse probability weighted-type empirical likelihood ratio for the parameters of interest is defined such that this ratio is asymptotically standard chi-squared. Our approach is to directly calibrate the empirical log-likelihood ratio, and does not need multiplication by an adjustment factor for the original ratio. Our bias-corrected empirical likelihood is self-scale invariant and no plug-in estimator for the limiting variance is needed. Some simulation studies are carried out to assess the performance of our proposed method.  相似文献   

8.
In this paper we apply empirical likelihood method to the error density estimators in first-order autoregressive models under some mild conditions. The log-likelihood ratio statistic is shown to be asymptotically chi-squared distributed at a fixed point. In simulation, we show that the empirical likelihood produces confidence intervals having theoretical coverage accuracy which is better than normal approximation.  相似文献   

9.
In this article, we use the empirical likelihood method to construct the confidence region for parameters in autoregressive model with martingale difference error. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. The simulation results suggest that the empirical likelihood method outperforms the normal approximation based method in terms of coverage probability.  相似文献   

10.
Xing-Cai Zhou 《Statistics》2013,47(3):668-684
In this paper, empirical likelihood inference in mixture of semiparametric varying-coefficient models for longitudinal data with non-ignorable dropout is investigated. We estimate the non-parametric function based on the estimating equations and the local linear profile-kernel method. An empirical log-likelihood ratio statistic for parametric components is proposed to construct confidence regions and is shown to be an asymptotically chi-squared distribution. The non-parametric version of Wilk's theorem is also derived. A simulation study is undertaken to illustrate the finite sample performance of the proposed method.  相似文献   

11.
In this article, we consider the application of the empirical likelihood method to a partially linear single-index model. We focus on the case where some covariates are measured with additive errors. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation method. A real data example is given.  相似文献   

12.
In this article, empirical likelihood inferences for the varying coefficient partially nonlinear models are investigated. An empirical log-likelihood ratio function for the unknown parameter vector in the nonlinear function part and a residual-adjusted empirical log-likelihood ratio function for the nonparametric component are proposed. The corresponding Wilks phenomena are proved and the confidence regions for parametric component and nonparametric component are constructed. Simulation studies indicate that, in terms of coverage probabilities and average areas of the confidence regions, the empirical likelihood method performs better than the normal approximation-based method. Furthermore, a real data set application is also provided to illustrate the proposed empirical likelihood estimation technique.  相似文献   

13.
It is known that the empirical likelihood ratio can be used to construct confidence regions for smooth functions of the mean, Fréchet differentiable statistical functionals and for a class of M-functionals. In this paper, we argue that this use can be extended to the class of functionals which are smooth functions of M-functionals. In particular, we find the conditions under which the empirical log-likelihood ratio for this kind of functionals admits a χ2 approxima tion. Furthermore, we investigate, by simulation methods, the related approximation error in some contexts of practical interest.  相似文献   

14.
Abstract.  Comparison of two samples can sometimes be conducted on the basis of analysis of receiver operating characteristic (ROC) curves. A variety of methods of point estimation and confidence intervals for ROC curves have been proposed and well studied. We develop smoothed empirical likelihood-based confidence intervals for ROC curves when the samples are censored and generated from semiparametric models. The resulting empirical log-likelihood function is shown to be asymptotically chi-squared. Simulation studies illustrate that the proposed empirical likelihood confidence interval is advantageous over the normal approximation-based confidence interval. A real data set is analysed using the proposed method.  相似文献   

15.
Empirical Likelihood for Censored Linear Regression   总被引:5,自引:0,他引:5  
In this paper we investigate the empirical likelihood method in a linear regression model when the observations are subject to random censoring. An empirical likelihood ratio for the slope parameter vector is defined and it is shown that its limiting distribution is a weighted sum of independent chi-square distributions. This reduces to the empirical likelihood to the linear regression model first studied by Owen (1991) if there is no censoring present. Some simulation studies are presented to compare the empirical likelihood method with the normal approximation based method proposed in Lai et al. (1995). It was found that the empirical likelihood method performs much better than the normal approximation method.  相似文献   

16.
We investigate empirical likelihood for the additive hazards model with current status data. An empirical log-likelihood ratio for a vector or subvector of regression parameters is defined and its limiting distribution is shown to be a standard chi-squared distribution. The proposed inference procedure enables us to make empirical likelihood-based inference for the regression parameters. Finite sample performance of the proposed method is assessed in simulation studies to compare with that of a normal approximation method, it shows that the empirical likelihood method provides more accurate inference than the normal approximation method. A real data example is used for illustration.  相似文献   

17.
As new diagnostic tests are developed and marketed, it is very important to be able to compare the accuracy of a given two continuous‐scale diagnostic tests. An effective method to evaluate the difference between the diagnostic accuracy of two tests is to compare partial areas under the receiver operating characteristic curves (AUCs). In this paper, we review existing parametric methods. Then, we propose a new semiparametric method and a new nonparametric method to investigate the difference between two partial AUCs. For the difference between two partial AUCs under each method, we derive a normal approximation, define an empirical log‐likelihood ratio, and show that the empirical log‐likelihood ratio follows a scaled chi‐square distribution. We construct five confidence intervals for the difference based on normal approximation, bootstrap, and empirical likelihood methods. Finally, extensive simulation studies are conducted to compare the finite‐sample performances of these intervals, and a real example is used as an application of our recommended intervals. The simulation results indicate that the proposed hybrid bootstrap and empirical likelihood intervals outperform other existing intervals in most cases.  相似文献   

18.
Empirical Likelihood-based Inference in Linear Models with Missing Data   总被引:18,自引:0,他引:18  
The missing response problem in linear regression is studied. An adjusted empirical likelihood approach to inference on the mean of the response variable is developed. A non-parametric version of Wilks's theorem for the adjusted empirical likelihood is proved, and the corresponding empirical likelihood confidence interval for the mean is constructed. With auxiliary information, an empirical likelihood-based estimator with asymptotic normality is defined and an adjusted empirical log-likelihood function with asymptotic χ2 is derived. A simulation study is conducted to compare the adjusted empirical likelihood methods and the normal approximation methods in terms of coverage accuracies and average lengths of the confidence intervals. Based on biases and standard errors, a comparison is also made between the empirical likelihood-based estimator and related estimators by simulation. Our simulation indicates that the adjusted empirical likelihood methods perform competitively and the use of auxiliary information provides improved inferences.  相似文献   

19.
Abstract.  The Cox model with time-dependent coefficients has been studied by a number of authors recently. In this paper, we develop empirical likelihood (EL) pointwise confidence regions for the time-dependent regression coefficients via local partial likelihood smoothing. The EL simultaneous confidence bands for a linear combination of the coefficients are also derived based on the strong approximation methods. The EL ratio is formulated through the local partial log-likelihood for the regression coefficient functions. Our numerical studies indicate that the EL pointwise/simultaneous confidence regions/bands have satisfactory finite sample performances. Compared with the confidence regions derived directly based on the asymptotic normal distribution of the local constant estimator, the EL confidence regions are overall tighter and can better capture the curvature of the underlying regression coefficient functions. Two data sets, the gastric cancer data and the Mayo Clinic primary biliary cirrhosis data, are analysed using the proposed method.  相似文献   

20.
In this paper, a nonlinear model with response variables missing at random is studied. In order to improve the coverage accuracy for model parameters, the empirical likelihood (EL) ratio method is considered. On the complete data, the EL statistic for the parameters and its approximation have a χ2 asymptotic distribution. When the responses are reconstituted using a semi-parametric method, the empirical log-likelihood on the response variables associated with the imputed data is also asymptotically χ2. The Wilks theorem for EL on the parameters, based on reconstituted data, is also satisfied. These results can be used to construct the confidence region for the model parameters and the response variables. It is shown via Monte Carlo simulations that the EL methods outperform the normal approximation-based method in terms of coverage probability for the unknown parameter, including on the reconstituted data. The advantages of the proposed method are exemplified on real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号