首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Recently, in the literature, the use of quantile functions in the place of distribution functions has provided new models, alternative methodology and easier algebraic manipulations. In this paper, we introduce new orders among the random variables in terms of their quantile functions like the reversed hazard quantile function, the reversed mean residual quantile function and the reversed variance residual quantile function orders. The relationships among the proposed orders and some existing orders are also discussed.  相似文献   

2.
The paper discusses a quantile-based definition for the well-known proportional odds model. We present various reliability properties of the model using quantile functions. Different ageing properties are derived. A generalization for the class of distributions with bilinear hazard quantile function is established and the practical application of this model is illustrated with a real-life data set.  相似文献   

3.
In this paper we propose a quantile survival model to analyze censored data. This approach provides a very effective way to construct a proper model for the survival time conditional on some covariates. Once a quantile survival model for the censored data is established, the survival density, survival or hazard functions of the survival time can be obtained easily. For illustration purposes, we focus on a model that is based on the generalized lambda distribution (GLD). The GLD and many other quantile function models are defined only through their quantile functions, no closed‐form expressions are available for other equivalent functions. We also develop a Bayesian Markov Chain Monte Carlo (MCMC) method for parameter estimation. Extensive simulation studies have been conducted. Both simulation study and application results show that the proposed quantile survival models can be very useful in practice.  相似文献   

4.
This study examines estimation and inference based on quantile regression for parametric nonlinear models with an integrated time series covariate. We first derive the limiting distribution of the nonlinear quantile regression estimator and then consider testing for parameter restrictions, when the regression function is specified as an asymptotically homogeneous function. We also study linear-in-parameter regression models when the regression function is given by integrable regression functions as well as asymptotically homogeneous regression functions. We, furthermore, propose a fully modified estimator to reduce the bias in the original estimator under a certain set of conditions. Finally, simulation studies show that the estimators behave well, especially when the regression error term has a fat-tailed distribution.  相似文献   

5.
In this article, we propose a new class of distributions defined by a quantile function, which nests several distributions as its members. The quantile function proposed here is the sum of the quantile functions of the generalized Pareto and Weibull distributions. Various distributional properties and reliability characteristics of the class are discussed. The estimation of the parameters of the model using L-moments is studied. Finally, we apply the model to a real life dataset.  相似文献   

6.
Abstract

The present paper introduces a new family of distributions with quadratic mean residual quantile function. Various distributional properties as well as reliability characteristics are discussed. Some characterizations of the class of distributions are presented. The estimation of parameters of the model using method of L-moments is studied. The practical application of the class of models is illustrated with a real life data set.  相似文献   

7.
In this article, we introduce and study a class of distributions that has linear hazard quantile function. Various distributional properties and reliability characteristics of the class are studied. Some characterizations of the class of distributions are presented. The method of L-moments is employed to estimate parameters of the class of distributions. Finally, we apply the proposed class to a real data set.  相似文献   

8.
ABSTRACT

We propose parametric inferences for quantile event times with adjustment for covariates on competing risks data. We develop parametric quantile inferences using parametric regression modeling of the cumulative incidence function from the cause-specific hazard and direct approaches. Maximum likelihood inferences are developed for estimation of the cumulative incidence function and quantiles. We develop the construction of parametric confidence intervals for quantiles. Simulation studies show that the proposed methods perform well. We illustrate the methods using early stage breast cancer data.  相似文献   

9.
We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed family contains as special cases the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, two entropy measures and order statistics are obtained. We derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behaviour of the estimators by means of Monte Carlo simulations. We introduce the log-odd log-logistic Weibull regression model with censored data based on the odd log-logistic-Weibull distribution. The importance of the new family is illustrated using three real data sets. These applications indicate that this family can provide better fits than other well-known classes of distributions. The beauty and importance of the proposed family lies in its ability to model different types of real data.  相似文献   

10.
We introduce and study general mathematical properties of a new generator of continuous distributions with three extra parameters called the new generalized odd log-logistic family of distributions. The proposed family contains several important classes discussed in the literature as submodels such as the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, entropy measures, and order statistics, which hold for any baseline model, are presented. We also present certain characterization of the proposed distribution and derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behavior of the maximum likelihood estimator via simulation. The importance of the new family is illustrated by means of two real data sets. These applications indicate that the new family can provide better fits than other well-known classes of distributions. The beauty and importance of the new family lies in its ability to model real data.  相似文献   

11.
Several asymptotically equivalent quantile estimators recently have been proposed as alternative to the conventional sample quantile. A variety of weight functions have been obtained either by subsampling considerations or by a kernel approach, analogous to density estimation techniques. Focusing on the former approach, a unified treatment of quantile estimators derived by subsampling is developed. Closely related to the generalized Harrell-Davis (HD) and Kaigh-Lachenbruch (KL) estimators, a new statistic performed well in Monte Carlo effiency comparisons presented here. Moreover, the new estimator shares certain desirable computational and finite-sample theeoretical properties with the KL estimator to yield convenient components representations for tests of uniformity and goodness-of-fit criteria. Similar analytic treatment for the HD statistics and kernel quantile estimators, however, is precluded by intractable eigenvalue problems.  相似文献   

12.
The paper gives the saddlepoint approximation for the distribution function of the sample quantile. A comparison of the saddlepoint approximations for the distribution functions of the sample quantile and the bootstrap quantile shows that the error of the bootstrap approximation to the distribution of the sample quantile obtained by Singh (1981) as an absolute error is actually a relative error.  相似文献   

13.
In this paper, we propose a class of distributions with the inverse linear mean residual quantile function. The distributional properties of the family of distributions are studied. We then discuss the reliability characteristics of the family of distributions. Some characterizations of the class of distributions are also discussed. The parameters of the class of distributions are estimated using the method of L-moments. The proposed class of distributions is applied to a real data set.  相似文献   

14.
In this note we develop a new quantile function estimator called the tail extrapolation quantile function estimator. The estimator behaves asymptotically exactly the same as the standard linear interpolation estimator. For finite samples there is small correction towards estimating the extreme quantiles. We illustrate that by employing this new estimator we can greatly improve the coverage probabilities of the standard bootstrap percentile confidence intervals. The method does not reqiure complicated calculations and hence it should appeal to the statistical practitioner.  相似文献   

15.
A two shape parameter generalization of the well known family of the Weibull distributions is presented and its properties are studied. The properties examined include the skewness and kurtosis, density shapes and tail character, and relation of the members of the family to those of the Pear-sonian system. The members of the family are grouped in four classes in terms of these properties. Also studied are the extreme value distributions and the limiting distributions of the extreme spacings for the members of the family. It is seen that the generalized Weibull family contains distributions with a variety of density and tail shapes, and distributions which in terms of skewness and kurtosis approximate the main types of curves of the Pearson system. Furthermore, as shown by the extreme value and extreme spacings distributions the family contains short, medium and long tailed distributions. The quantile and density quantile functions are the principle tools used for the structural analysis of the family.  相似文献   

16.
In this paper, we investigate the commonality of nonparametric component functions among different quantile levels in additive regression models. We propose two fused adaptive group Least Absolute Shrinkage and Selection Operator penalties to shrink the difference of functions between neighbouring quantile levels. The proposed methodology is able to simultaneously estimate the nonparametric functions and identify the quantile regions where functions are unvarying, and thus is expected to perform better than standard additive quantile regression when there exists a region of quantile levels on which the functions are unvarying. Under some regularity conditions, the proposed penalised estimators can theoretically achieve the optimal rate of convergence and identify the true varying/unvarying regions consistently. Simulation studies and a real data application show that the proposed methods yield good numerical results.  相似文献   

17.
The composite quantile regression (CQR) has been developed for the robust and efficient estimation of regression coefficients in a liner regression model. By employing the idea of the CQR, we propose a new regression method, called composite kernel quantile regression (CKQR), which uses the sum of multiple check functions as a loss in reproducing kernel Hilbert spaces for the robust estimation of a nonlinear regression function. The numerical results demonstrate the usefulness of the proposed CKQR in estimating both conditional nonlinear mean and quantile functions.  相似文献   

18.
In this article, we derive explicit expansions for the moments of beta generalized distributions from power series expansions for the quantile functions of the baseline distributions. We apply our formula to the beta normal, beta Student t, beta gamma and beta beta generalized distributions. We propose a simple way to express the quantile function of any beta generalized distribution as a power series expansion with known coefficients.  相似文献   

19.
Consider distributions F and G such that G -1 F is star-shaped. In the problem of estimating the quantile functions for lifetime distributions, the estimators developed by Rojo (1998) are compared with the commonly used empirical quantile function. Both the one-sample and the two-sample methods of estimation are considered for a wide class of lifetime distributions. In addition, the behavior of the estimators is examined for star-shaped ordered lifetime distributions of the important class of coherent k- out-of-n reliability systems. Results of a Monte Carlo study are presented which compare the behavior of the new estimators with that of the empirical quantile function interms of bias and mean-squared error. As the behavior of these estimators typically depends on the tail behavior of the underlying distributions, the examples presented here include distributions with short, medium and long tails. A formula for the inverse of the Kaplan-Meier estimator is provided and used to generate the simulations in the case of censored data.  相似文献   

20.
We propose a semiparametric estimator for single‐index models with censored responses due to detection limits. In the presence of left censoring, the mean function cannot be identified without any parametric distributional assumptions, but the quantile function is still identifiable at upper quantile levels. To avoid parametric distributional assumption, we propose to fit censored quantile regression and combine information across quantile levels to estimate the unknown smooth link function and the index parameter. Under some regularity conditions, we show that the estimated link function achieves the non‐parametric optimal convergence rate, and the estimated index parameter is asymptotically normal. The simulation study shows that the proposed estimator is competitive with the omniscient least squares estimator based on the latent uncensored responses for data with normal errors but much more efficient for heavy‐tailed data under light and moderate censoring. The practical value of the proposed method is demonstrated through the analysis of a human immunodeficiency virus antibody data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号