首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Piotr Jaworski 《Statistics》2013,47(5):1064-1074
In this paper, the class of all multivariate copulas that are invariant under univariate truncation is characterized.  相似文献   

2.
The author characterizes the copula associated with the bivariate survival model of Clayton (1978) as the only absolutely continuous copula that is preserved under bivariate truncation.  相似文献   

3.
Multivariate copula models are commonly used in place of Gaussian dependence models when plots of the data suggest tail dependence and tail asymmetry. In these cases, it is useful to have simple statistics to summarize the strength of dependence in different joint tails. Measures of monotone association such as Kendall's tau and Spearman's rho are insufficient to distinguish commonly used parametric bivariate families with different tail properties. We propose lower and upper tail-weighted bivariate measures of dependence as additional scalar measures to distinguish bivariate copulas with roughly the same overall monotone dependence. These measures allow the efficient estimation of strength of dependence in the joint tails and can be used as a guide for selection of bivariate linking copulas in vine and factor models as well as for assessing the adequacy of fit of multivariate copula models. We apply the tail-weighted measures of dependence to a financial data set and show that the measures better discriminate models with different tail properties compared to commonly used risk measures – the portfolio value-at-risk and conditional tail expectation.  相似文献   

4.
The authors consider the construction of intrinsic estimators for the Pickands dependence function of an extreme‐value copula. They show how an arbitrary initial estimator can be modified to satisfy the required shape constraints. Their solution consists in projecting this estimator in the space of Pickands functions, which forms a closed and convex subset of a Hilbert space. As the solution is not explicit, they replace this functional parameter space by a sieve of finite‐dimensional subsets. They establish the asymptotic distribution of the projection estimator and its finite‐dimensional approximations, from which they conclude that the projected estimator is at least as efficient as the initial one.  相似文献   

5.
Let X  = (X, Y) be a pair of lifetimes whose dependence structure is described by an Archimedean survival copula, and let X t  = [(X ? t, Y ? t) | X > t, Y > t] denotes the corresponding pair of residual lifetimes after time t ≥ 0. Multivariate aging notions, defined by means of stochastic comparisons between X and X t , with t ≥ 0, were studied in Pellerey (2008 Pellerey , F. ( 2008 ). On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas . Kybernetika 44 : 795806 .[Web of Science ®] [Google Scholar]), who considered pairs of lifetimes having the same marginal distribution. Here, we present the generalizations of his results, considering both stochastic comparisons between X t and X t+s for all t, s ≥ 0 and the case of dependent lifetimes having different distributions. Comparisons between two different pairs of residual lifetimes, at any time t ≥ 0, are discussed as well.  相似文献   

6.
    
We introduce a new copula model for non-stationary replicated spatial data. It is based on the assumption that a common factor exists that controls the joint dependence of all the observations from the spatial process. As a result, our proposal can model tail dependence and tail asymmetry, unlike the Gaussian copula model. Moreover, we show that the new model can cover a full range of dependence between tail quadrant independence and tail dependence. Although the log-likelihood of the model can be obtained in a simple form, we discuss its numerical computational issues and ways to approximate it for drawing inference. Using the estimated copula model, the spatial process can be interpolated at locations where it is not observed. We apply the proposed model to temperature data over the western part of Switzerland, and we compare its performance with that of its stationary version and with the Gaussian copula model.  相似文献   

7.
Non-parametric Estimation of Tail Dependence   总被引:4,自引:0,他引:4  
Abstract.  Dependencies between extreme events (extremal dependencies) are attracting an increasing attention in modern risk management. In practice, the concept of tail dependence represents the current standard to describe the amount of extremal dependence. In theory, multi-variate extreme-value theory turns out to be the natural choice to model the latter dependencies. The present paper embeds tail dependence into the concept of tail copulae which describes the dependence structure in the tail of multivariate distributions but works more generally. Various non-parametric estimators for tail copulae and tail dependence are discussed, and weak convergence, asymptotic normality, and strong consistency of these estimators are shown by means of a functional delta method. Further, weak convergence of a general upper-order rank-statistics for extreme events is investigated and the relationship to tail dependence is provided. A simulation study compares the introduced estimators and two financial data sets were analysed by our methods.  相似文献   

8.
In this article, we investigate the asymptotic normality of the Hill's estimator of the tail index parameter, when the observations are weakly dependent in the sense of Doukhan and Louhichi (1999 Doukhan, P., Louhichi, S. (1999). A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84:313342.[Crossref], [Web of Science ®] [Google Scholar]) and are drawn from a strictly linear process. We show that the previous result on Hill estimator obtained by Rootzen et al. (1990 Rootzen, H., Leadbetter, M., De Haan, L. (1990). Tail and quantile estimation for strongly mixing stationary sequences. Technical report. No. 292, Center for Stochastic Processes, Department of Statistics, University of North Carolina, Chapel Hill. [Google Scholar]) and Resnick and Starica (1997 Resnick, S., Starica, C. (1997). Asymptotic behavior of Hill's estimator for autoregressive data. Commun. Statistics-stochastic Models 13:703723.[Taylor &; Francis Online] [Google Scholar]) for strong mixing can be extended to weak dependence.  相似文献   

9.
The directional dependence between variables using asymmetric copula regression has drawn much attention in recent years. There are, however, some critical issues which have not been properly addressed in regards to the statistical inference of the directional dependence. For example, the previous use of asymmetric copulas failed to fully capture the dependence patterns between variables, and the method used for the parameter estimation was not optimal. In addition, no method was considered for selecting a suitable asymmetric copula or for computing the general measurements of the directional dependence when there are no closed-form expressions. In this paper, we propose a generalized multiple-step procedure for the full inference of the directional dependence in joint behaviour based on the asymmetric copula regression. The proposed procedure utilizes several novel methodologies that have not been considered in the literature of the analysis of directional dependence. The performance and advantages of the proposed procedure are illustrated using two real data examples, one from biological research on histone genes, and the other from developmental research on attention deficit hyperactivity disorder.  相似文献   

10.
    
In this paper, we introduce a new class of bivariate distributions whose marginals are beta-generated distributions. Copulas are employed to construct this bivariate extension of the beta-generated distributions. It is shown that when Archimedean copulas and convex beta generators are used in generating bivariate distributions, the copulas of the resulting distributions also belong to the Archimedean family. The dependence of the proposed bivariate distributions is examined. Simulation results for beta generators and an application to financial risk management are presented.  相似文献   

11.
The authors show how the approach of Capéra à & Genest (The Canadian Journal of Statistics, 1990) can be used to order bivariate distributions with arbitrary marginals by their degree of dependence in the LTD (left‐tail decreasing) or RTI (right‐tail increasing) sense. Some properties of these new orderings are given, along with applications to Archimedean copulas, order statistics and compound random variables.  相似文献   

12.
Copulas characterize the dependence among components of random vectors. Unlike marginal and joint distributions, which are directly observable, the copula of a random vector is a hidden dependence structure that links the joint distribution with its margins. Choosing a parametric copula model is thus a nontrivial task but it can be facilitated by relying on a nonparametric estimator. Here the authors propose a kernel estimator of the copula that is mean square consistent everywhere on the support. They determine the bias and variance of this estimator. They also study the effects of kernel smoothing on copula estimation. They then propose a smoothing bandwidth selection rule based on the derived bias and variance. After confirming their theoretical findings through simulations, they use their kernel estimator to formulate a goodness-of-fit test for parametric copula models.  相似文献   

13.
In this paper, we characterise a family of bivariate copulas whose sections between the main diagonal and the border of the unit square are polynomial, generalising several families of copulas, including those with quadratic and cubic sections. We also study a measure of association and the tail dependence for this class, illustrating our results with several examples.  相似文献   

14.
The authors define a new semiparametric Archimedean copula family which has a flexible dependence structure. The generator of the family is a local interpolation of existing generators. It has locally‐defined dependence parameters. The authors present a penalized constrained least‐squares method to estimate and smooth these parameters. They illustrate the flexibility of their dependence model in a bi‐variate survival example.  相似文献   

15.
The lower tail dependence λL is a measure that characterizes the tendency of extreme co-movements in the lower tails of a bivariate distribution. It is invariant with respect to strictly increasing transformations of the marginal distribution and is therefore a function of the copula of the bivariate distribution. λL plays an important role in modelling aggregate financial risk with copulas. This paper introduces three non-parametric estimators for λL. They are weakly consistent under mild regularity conditions on the copula and under the assumption that the number k = k(n) of observations in the lower tail, used for estimation, is asymptotically k ≈ √n. The finite sample properties of the estimators are investigated using a Monte Carlo simulation in special cases. It turns out that these estimators are biased, where amount and sign of the bias depend on the underlying copula, on the sample size n, on k, and on the true value of λL.  相似文献   

16.
A meta-elliptical model is a distribution function whose copula is that of an elliptical distribution. The tail dependence function in such a bivariate model has a parametric representation with two parameters: a tail parameter and a correlation parameter. The correlation parameter can be estimated by robust methods based on the whole sample. Using the estimated correlation parameter as plug-in estimator, we then estimate the tail parameter applying a modification of the method of moments approach proposed in the paper by Einmahl et al. (2008). We show that such an estimator is consistent and asymptotically normal. Further, we derive the joint limit distribution of the estimators of the two parameters. We illustrate the small sample behavior of the estimator of the tail parameter by a simulation study and on real data, and we compare its performance to that of the competitive estimators.  相似文献   

17.
    
The multivariate Student-t copula family is used in statistical finance and other areas when there is tail dependence in the data. It often is a good-fitting copula but can be improved on when there is tail asymmetry. Multivariate skew-t copula families can be considered when there is tail dependence and tail asymmetry, and we show how a fast numerical implementation for maximum likelihood estimation is possible. For the copula implicit in a multivariate skew-t distribution, the fast implementation makes use of (i) monotone interpolation of the univariate marginal quantile function and (ii) a re-parametrization of the correlation matrix. Our numerical approach is tested with simulated data with data-driven parameters. A real data example involves the daily returns of three stock indices: the Nikkei225, S&P500 and DAX. With both unfiltered returns and GARCH/EGARCH filtered returns, we compare the fits of the Azzalini–Capitanio skew-t, generalized hyperbolic skew-t, Student-t, skew-Normal and Normal copulas.  相似文献   

18.
Abstract. In general, the risk of joint extreme outcomes in financial markets can be expressed as a function of the tail dependence function of a high‐dimensional vector after standardizing marginals. Hence, it is of importance to model and estimate tail dependence functions. Even for moderate dimension, non‐parametrically estimating a tail dependence function is very inefficient and fitting a parametric model to tail dependence functions is not robust. In this paper, we propose a semi‐parametric model for (asymptotically dependent) tail dependence functions via an elliptical copula. Under this model assumption, we propose a novel estimator for the tail dependence function, which proves favourable compared to the empirical tail dependence function estimator, both theoretically and empirically.  相似文献   

19.
A new nonparametric estimator is proposed for the copula function of a bivariate survival function for data subject to random right-censoring. We consider two censoring models: univariate and copula censoring. We show strong consistency and we obtain an i.i.d. representation for the copula estimator. In a simulation study we compare the new estimator to the one of Gribkova and Lopez [Nonparametric copula estimation under bivariate censoring; doi:10.1111/sjos.12144].  相似文献   

20.
Positive quadrant dependence is a specific dependence structure that is of practical importance in for example modelling dependencies in insurance and actuarial sciences. This dependence structure imposes a constraint on the copula function. The interest in this paper is to test for positive quadrant dependence. One way to assess the distribution of the test statistics under the null hypothesis of positive quadrant dependence is to resample from a constrained copula. This requires constrained estimation of a copula function. We show that this use of resampling under a constrained copula improves considerably the power performance of existing testing procedures. We propose two resampling procedures, one based on a parametric constrained copula estimation and one relying on nonparametric estimation of a positive quadrant dependence copula, and discuss their properties. The finite‐sample performances of the resulting testing procedures are evaluated via a simulation study that also includes comparisons with existing tests. Finally, a data set of Danish fire insurance claims is tested for positive quadrant dependence. The Canadian Journal of Statistics 41: 36–64; 2013 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号