首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  Integer-valued auto-regressive (INAR) processes have been introduced to model non-negative integer-valued phenomena that evolve over time. The distribution of an INAR( p ) process is essentially described by two parameters: a vector of auto-regression coefficients and a probability distribution on the non-negative integers, called an immigration or innovation distribution. Traditionally, parametric models are considered where the innovation distribution is assumed to belong to a parametric family. The paper instead considers a more realistic semiparametric INAR( p ) model where there are essentially no restrictions on the innovation distribution. We provide an (semiparametrically) efficient estimator of both the auto-regression parameters and the innovation distribution.  相似文献   

2.
Abstract

In this paper, we present a fractional decomposition of the probability generating function of the innovation process of the first-order non-negative integer-valued autoregressive [INAR(1)] process to obtain the corresponding probability mass function. We also provide a comprehensive review of integer-valued time series models, based on the concept of thinning operators with geometric-type marginals. In particular, we develop two fractional approaches to obtain the distribution of innovation processes of the INAR(1) model and show that the distribution of the innovations sequence has geometric-type distribution. These approaches are discussed in detail and illustrated through a few examples.  相似文献   

3.
Abstract

Binomial integer-valued AR processes have been well studied in the literature, but there is little progress in modeling bounded integer-valued time series with outliers. In this paper, we first review some basic properties of the binomial integer-valued AR(1) process and then we introduce binomial integer-valued AR(1) processes with two classes of innovational outliers. We focus on the joint conditional least squares (CLS) and the joint conditional maximum likelihood (CML) estimates of models’ parameters and the probability of occurrence of the outlier. Their large-sample properties are illustrated by simulation studies. Artificial and real data examples are used to demonstrate good performances of the proposed models.  相似文献   

4.
Abstract

This paper considers an extension of the classical discrete time risk model for which the claim numbers are assumed to be temporal dependence and overdispersion. The risk model proposed is based on the first-order integer-valued autoregressive (INAR(1)) process with discrete compound Poisson distributed innovations. The explicit expression for the moment generating function of the discounted aggregate claim amount is derived. Some numerical examples are provided to illustrate the impacts of dependence and overdispersion on related quantities such as the stop-loss premium, the value at risk and the tail value at risk.  相似文献   

5.
This paper considers the first-order integer-valued autoregressive (INAR) process with Katz family innovations. This family of INAR processes includes a broad class of INAR(1) processes with Poisson, negative binomial, and binomial innovations, respectively, featuring equi-, over-, and under-dispersion. Its probabilistic properties such as ergodicity and stationarity are investigated and the formula of the marginal mean and variance is provided. Further, a statistical process control procedure based on the cumulative sum control chart is considered to monitor autocorrelated count processes. A simulation and real data analysis are conducted for illustration.  相似文献   

6.
We propose a new integer-valued time series process, called generalized pth-order random coefficient integer-valued autoregressive process with signed thinning operator. This kind of process is appropriate for modeling negative integer-valued time series; strict stationarity and ergodicity of the process are established. Estimators of the model's parameters are derived and their properties are studied via simulation. We apply our process to a real data example.  相似文献   

7.
A simple model for a stationary sequence of dependent integer-valued random variables {Xn} is given. The sequence to be called integer-valued moving average (INMA) process, is taken as the “survivals” of i.i.d. non-negative integervalued random variables. It is argued that the model’s structure reflects to some extent the mechanism generating real life data for many counting process and consequently it is useful for modelling such processes. Various properties for the special case in which {Xn} is Poisson INMA (1) process, such as the joint distribution, regression, time reversibility, along with the conditional and partial correlations, are discussed in details. Extension of the INMA of first order to higher order moving average is considered.  相似文献   

8.
In this paper, we introduce a new non-negative integer-valued autoregressive time series model based on a new thinning operator, so called generalized zero-modified geometric (GZMG) thinning operator. The first part of the paper is devoted to the distribution, GZMG distribution, which is obtained as the convolution of the zero-modified geometric (ZMG) distributed random variables. Some properties of this distribution are derived. Then, we construct a thinning operator based on the counting processes with ZMG distribution. Finally, an INAR(1) time series model is introduced and its properties including estimation issues are derived and discussed. A small Monte Carlo experiment is conducted to evaluate the performance of maximum likelihood estimators in finite samples. At the end of the paper, we consider an empirical illustration of the introduced INAR(1) model.  相似文献   

9.
A non-stationary integer-valued autoregressive model   总被引:1,自引:0,他引:1  
It is frequent to encounter a time series of counts which are small in value and show a trend having relatively large fluctuation. To handle such a non-stationary integer-valued time series with a large dispersion, we introduce a new process called integer-valued autoregressive process of order p with signed binomial thinning (INARS(p)). This INARS(p) uniquely exists and is stationary under the same stationary condition as in the AR(p) process. We provide the properties of the INARS(p) as well as the asymptotic normality of the estimates of the model parameters. This new process includes previous integer-valued autoregressive processes as special cases. To preserve integer-valued nature of the INARS(p) and to avoid difficulty in deriving the distributional properties of the forecasts, we propose a bootstrap approach for deriving forecasts and confidence intervals. We apply the INARS(p) to the frequency of new patients diagnosed with acquired immunodeficiency syndrome (AIDS) in Baltimore, Maryland, U.S. during the period of 108 months from January 1993 to December 2001.  相似文献   

10.
The first-order integer-valued autoregressive (INAR(1)) process with Poisson marginal distributions is considered. It is shown that the sample autocovariance function of the model is asymptotically normally distributed. We derive asymptotic distribution of Yule-Walker type estimators of parameters. It turns out that our Yule-Walker type estimators are better than the conditional least squares estimators proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987). also, we study the relationship between the model andM/M/∞ queueing system.  相似文献   

11.
In this paper we consider the problem of maximum likelihood (ML) estimation in the classical AR(1) model with i.i.d. symmetric stable innovations with known characteristic exponent and unknown scale parameter. We present an approach that allows us to investigate the properties of ML estimators without making use of numerical procedures. Finally, we introduce a generalization to the multivariate case.  相似文献   

12.
Real count data time series often show the phenomenon of the underdispersion and overdispersion. In this paper, we develop two extensions of the first-order integer-valued autoregressive process with Poisson innovations, based on binomial thinning, for modeling integer-valued time series with equidispersion, underdispersion, and overdispersion. The main properties of the models are derived. The methods of conditional maximum likelihood, Yule–Walker, and conditional least squares are used for estimating the parameters, and their asymptotic properties are established. We also use a test based on our processes for checking if the count time series considered is overdispersed or underdispersed. The proposed models are fitted to time series of the weekly number of syphilis cases and monthly counts of family violence illustrating its capabilities in challenging the overdispersed and underdispersed count data.  相似文献   

13.
A non-negative AR(2) process with exponentially distributed white noise is investigated in the paper. It is assumed that the autoregressive parameters are random variables with a vague prior density. They can be esto,ated by their posterior expectations. Explicit formulas for these estimators are derived and their strong consistency is proved. An approximation to the estimators is proposed which is easier for calculation. The results are illustrated in a simulation study  相似文献   

14.
Consider a random variable S being the sum of a number N of independent and identically distributed random variables Xj (j = 1, 2, ...) where the number N is itself a non-negative integer-valued random variable independent of the Xj An explicit expression of the r-th cumulant of S is given in terms of the cumulants of N and Xj, Asymptotic properties of the distribution of S are also discussed.  相似文献   

15.
Binomial thinning operator has a major role in modeling one-dimensional integer-valued autoregressive time series models. The purpose of this article is to extend the use of such operator to define a new stationary first-order spatial non negative, integer-valued autoregressive SINAR(1, 1) model. We study some properties of this model like the mean, variance and autocorrelation function. Yule-Walker estimator of the model parameters is also obtained. Some numerical results of the model are presented and, moreover, this model is applied to a real data set.  相似文献   

16.
This article proposes a bivariate integer-valued autoregressive time-series model of order 1 (BINAR(1) with COM–Poisson marginals to analyze a pair of non stationary time series of counts. The interrelation between the series is induced by the correlated innovations, while the non stationarity is captured through a common set of time-dependent covariates that influence the count responses. The regression and dependence effects are estimated using generalized quasi-likelihood (GQL) approach. Simulation experiments are performed to assess the performance of the estimation algorithms. The proposed BINAR(1) process is applied to analyze a real-life series of day and night accidents in Mauritius.  相似文献   

17.
Hailin Sang 《Statistics》2015,49(1):187-208
We propose a sparse coefficient estimation and automated model selection procedure for autoregressive processes with heavy-tailed innovations based on penalized conditional maximum likelihood. Under mild moment conditions on the innovation processes, the penalized conditional maximum likelihood estimator satisfies a strong consistency, OP(N?1/2) consistency, and the oracle properties, where N is the sample size. We have the freedom in choosing penalty functions based on the weak conditions on them. Two penalty functions, least absolute shrinkage and selection operator and smoothly clipped average deviation, are compared. The proposed method provides a distribution-based penalized inference to AR models, which is especially useful when the other estimation methods fail or under perform for AR processes with heavy-tailed innovations [Feigin, Resnick. Pitfalls of fitting autoregressive models for heavy-tailed time series. Extremes. 1999;1:391–422]. A simulation study confirms our theoretical results. At the end, we apply our method to a historical price data of the US Industrial Production Index for consumer goods, and obtain very promising results.  相似文献   

18.
A new distribution for non-negative integers, or counts, is developed. It is based on the assumption that the waiting times separating consecutive events are independently and identically gamma distributed. Thus, the structural process generating the counts may exhibit duration dependence. In this framework, the frequently observed phenomenon of overdispersion, that is a variance that exceeds the mean, is caused by a decreasing hazard function of the gamma distributed waiting times, while an increasing hazard leads to underdispersion at the level of the counts. A Monte Carlo simulation and an application to fertility data illustrate the performance of the new distribution.  相似文献   

19.
Some renewal theoretic properties of a renewal counting process induced by a Markov chain on the set of non-negative integers are established, namely, analogues of the classical elementary, Blackwell, and Breiman theorems and the key renewal theorem. These results generalize those of Vere-Jones (1975) who considered a Markov chain on the set of positive integers.  相似文献   

20.
This paper proposes a generalized quasi-likelihood (GQL) function for estimating the vector of regression and over-dispersion effects for the respective series in the bivariate integer-valued autoregressive process of order 1 (BINAR(1)) with Negative Binomial (NB) marginals. The auto-covariance function in the proposed GQL is computed using some ‘robust’ working structures. As for the BINAR(1) process, the inter-relation between the series is induced mainly by the correlated NB innovations that are subject to different levels of over-dispersion. The performance of the GQL approach is tested via some Monte-Carlo simulations under different combination of over-dispersion together with low and high serial- and cross-correlation parameters. The model is also applied to analyse a real-life series of day and night accidents in Mauritius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号