首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Negative-binomial (NB) regression models have been widely used for analysis of count data displaying substantial overdispersion (extra-Poisson variation). However, no formal lack-of-fit tests for a postulated parametric model for a covariate effect have been proposed. Therefore, a flexible parametric procedure is used to model the covariate effect as a linear combination of fixed-knot cubic basis splines or B-splines. Within the proposed modeling framework, a log-likelihood ratio test is constructed to evaluate the adequacy of a postulated parametric form of the covariate effect. Simulation experiments are conducted to study the power performance of the proposed test.  相似文献   

2.
Count data often contain many zeros. In parametric regression analysis of zero-inflated count data, the effect of a covariate of interest is typically modelled via a linear predictor. This approach imposes a restrictive, and potentially questionable, functional form on the relation between the independent and dependent variables. To address the noted restrictions, a flexible parametric procedure is employed to model the covariate effect as a linear combination of fixed-knot cubic basis splines or B-splines. The semiparametric zero-inflated Poisson regression model is fitted by maximizing the likelihood function through an expectation–maximization algorithm. The smooth estimate of the functional form of the covariate effect can enhance modelling flexibility. Within this modelling framework, a log-likelihood ratio test is used to assess the adequacy of the covariate function. Simulation results show that the proposed test has excellent power in detecting the lack of fit of a linear predictor. A real-life data set is used to illustrate the practicality of the methodology.  相似文献   

3.
ABSTRACT: We introduce a class of Toeplitz‐band matrices for simple goodness of fit tests for parametric regression models. For a given length r of the band matrix the asymptotic optimal solution is derived. Asymptotic normality of the corresponding test statistic is established under a fixed and random design assumption as well as for linear and non‐linear models, respectively. This allows testing at any parametric assumption as well as the computation of confidence intervals for a quadratic measure of discrepancy between the parametric model and the true signal g;. Furthermore, the connection between testing the parametric goodness of fit and estimating the error variance is highlighted. As a by‐product we obtain a much simpler proof of a result of 34 ) concerning the optimality of an estimator for the variance. Our results unify and generalize recent results by 9 ) and 15 , 16 ) in several directions. Extensions to multivariate predictors and unbounded signals are discussed. A simulation study shows that a simple jacknife correction of the proposed test statistics leads to reasonable finite sample approximations.  相似文献   

4.
Consider the nonparametric location-scale regression model Y=m(X)+σ(X)εY=m(X)+σ(X)ε, where the error εε is independent of the covariate XX, and mm and σσ are smooth but unknown functions. The pair (X,Y)(X,Y) is allowed to be subject to selection bias. We construct tests for the hypothesis that m(·)m(·) belongs to some parametric family of regression functions. The proposed tests compare the nonparametric maximum likelihood estimator (NPMLE) based on the residuals obtained under the assumed parametric model, with the NPMLE based on the residuals obtained without using the parametric model assumption. The asymptotic distribution of the test statistics is obtained. A bootstrap procedure is proposed to approximate the critical values of the tests. Finally, the finite sample performance of the proposed tests is studied in a simulation study, and the developed tests are applied on environmental data.  相似文献   

5.
Real world data often fail to meet the underlying assumption of population normality. The Rank Transformation (RT) procedure has been recommended as an alternative to the parametric factorial analysis of covariance (ANCOVA). The purpose of this study was to compare the Type I error and power properties of the RT ANCOVA to the parametric procedure in the context of a completely randomized balanced 3 × 4 factorial layout with one covariate. This study was concerned with tests of homogeneity of regression coefficients and interaction under conditional (non)normality. Both procedures displayed erratic Type I error rates for the test of homogeneity of regression coefficients under conditional nonnormality. With all parametric assumptions valid, the simulation results demonstrated that the RT ANCOVA failed as a test for either homogeneity of regression coefficients or interaction due to severe Type I error inflation. The error inflation was most severe when departures from conditional normality were extreme. Also associated with the RT procedure was a loss of power. It is recommended that the RT procedure not be used as an alternative to factorial ANCOVA despite its encouragement from SAS, IMSL, and other respected sources.  相似文献   

6.
ABSTRACT

The Mack–Wolfe test is the most frequently used non parametric procedure for the umbrella alternative problem. In this paper, modifications of the Mack–Wolfe test are proposed for both known peak and unknown peak umbrellas. The exact mean and variance of the proposed tests in the null hypothesis are also derived. We compare these tests with some of the existing tests in terms of the type I error rate and power. In addition, a real data example is presented.  相似文献   

7.
The inverse Gaussian distribution provides a flexible model for analyzing positive, right-skewed data. The generalized variable test for equality of several inverse Gaussian means with unknown and arbitrary variances has satisfactory Type-I error rate when the number of samples (k) is small (Tian, 2006). However, the Type-I error rate tends to be inflated when k goes up. In this article, we propose a parametric bootstrap (PB) approach for this problem. Simulation results show that the proposed test performs very satisfactorily regardless of the number of samples and sample sizes. This method is illustrated by an example.  相似文献   

8.
A procedure is proposed whereby R test statistics F=(F1F2…Fr)together with "randomly generated critical points" (C1C2…Cr) may be used to construct a simultaneous test for

a family containing R hypotheses. This procedure provides simultaneous tests having an exact prescribed type I error rate; the procedure does not require the distribution of F to be known. The simultaneous test is illustrated for making all pairwise comparisons in a one-way ANOVA model.  相似文献   

9.
Nonparametric regression models are often used to check or suggest a parametric model. Several methods have been proposed to test the hypothesis of a parametric regression function against an alternative smoothing spline model. Some tests such as the locally most powerful (LMP) test by Cox et al. (Cox, D., Koh, E., Wahba, G. and Yandell, B. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. Ann. Stat., 16, 113–119.), the generalized maximum likelihood (GML) ratio test and the generalized cross validation (GCV) test by Wahba (Wahba, G. (1990). Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.) were developed from the corresponding Bayesian models. Their frequentist properties have not been studied. We conduct simulations to evaluate and compare finite sample performances. Simulation results show that the performances of these tests depend on the shape of the true function. The LMP and GML tests are more powerful for low frequency functions while the GCV test is more powerful for high frequency functions. For all test statistics, distributions under the null hypothesis are complicated. Computationally intensive Monte Carlo methods can be used to calculate null distributions. We also propose approximations to these null distributions and evaluate their performances by simulations.  相似文献   

10.
We develop a finite-sample procedure to test the mean-variance efficiency and spanning hypotheses, without imposing any parametric assumptions on the distribution of model disturbances. In so doing, we provide an exact distribution-free method to test uniform linear restrictions in multivariate linear regression models. The framework allows for unknown forms of nonnormalities as well as time-varying conditional variances and covariances among the model disturbances. We derive exact bounds on the null distribution of joint F statistics to deal with the presence of nuisance parameters, and we show how to implement the resulting generalized nonparametric bounds tests with Monte Carlo resampling techniques. In sharp contrast to the usual tests that are not even computable when the number of test assets is too large, the power of the proposed test procedure potentially increases along both the time and cross-sectional dimensions.  相似文献   

11.
This article studies a new procedure to test for the equality of k regression curves in a fully non‐parametric context. The test is based on the comparison of empirical estimators of the characteristic functions of the regression residuals in each population. The asymptotic behaviour of the test statistic is studied in detail. It is shown that under the null hypothesis, the distribution of the test statistic converges to a finite combination of independent chi‐squared random variables with one degree of freedom. The coefficients in this linear combination can be consistently estimated. The proposed test is able to detect contiguous alternatives converging to the null at the rate n ? 1 ∕ 2. The practical performance of the test based on the asymptotic null distribution is investigated by means of simulations.  相似文献   

12.
We consider the problem of testing the equality of several multivariate normal mean vectors under heteroscedasticity. We first construct a fiducial confidence region (FCR) for the differences between normal mean vectors and we then propose a fiducial test for comparing mean vectors by inverting the FCR. We also propose a simple approximate test that is based on a modification of the χ2 approximation. This simple test avoids the complications of simulation-based inference methods. We show that the proposed fiducial test has correct type one error rate asymptotically. We compare the proposed fiducial and approximate tests with the parametric bootstrap test in terms of controlling the type one error rate via an extensive simulation study. Our simulation results show that the proposed fiducial and approximate tests control the type one error rate, while there are cases that the parametric bootstrap test is out of control. We also discuss the power performance of the tests. Finally, we illustrate with a real example how our proposed methods are applicable in analyzing repeated measure designs including a single grouping variable.  相似文献   

13.
The muitivariate nonparametric tests analogous to the univar-iate rank sum test and median test are contained in Puri and Sen (1970). These tests provided a practical alternative for the analysis of multivariate data when the assumptions of parametric methods are not satisfied.

In this paper maximum values for LNthe asymptotic chi-Square test statistic for both the Multivariate Multisample Rank Sum Test (MMRST) and the Multivariate Multisample Median Test (MMMT) are developed.  相似文献   

14.
Consider a non‐parametric regression model Y =m (X )+ϵ , where m is an unknown regression function, Y is a real‐valued response variable, X is a real covariate, and ϵ is the error term. In this article, we extend the usual tests for homoscedasticity by developing consistent tests for independence between X and ϵ . Further, we investigate the local power of the proposed tests using Le Cam's contiguous alternatives. An asymptotic power study under local alternatives along with extensive finite sample simulation study shows that the performance of the new tests is competitive with existing ones. Furthermore, the practicality of the new tests is shown using two real data sets.  相似文献   

15.
Two or more regression models are said to be non-nested if neither can be obtained from the remaining models when parametric restrictions are imposed. Tests for choosing between linear non-nested regression models are found in literature, such as J and MJ tests. In this paper we propose variants of these two tests for the GAMLSS (Generalized Additive Models for Location, Scale and Shape) class of models. We report Monte Carlo evidence on finite sample behaviour of the proposed tests. Bootstrap-based testing inference is also considered. Overall, bootstrap MJ test had the best performance. An empirical application is presented and discussed.  相似文献   

16.
We propose goodness-of-fit tests for testing generalized linear models and semiparametric regression models against smooth alternatives. The focus is on models having both continous and factorial covariates. As a smooth extension of a parametric or semiparametric model we use generalized varying-coefficient models as proposed by Hastie and Tibshirani. A likelihood ratio statistic is used for testing. Asymptotic expansions allow us to write the estimates as linear smoothers which in turn guarantees simple and fast bootstrapping of the test statistic. The test is shown to have √ n -power, but in contrast with parametric tests it is powerful against smooth alternatives in general.  相似文献   

17.
We consider the problem of comparing (k + 1) coefficients of variation. We are interested in testing the null hypothesis that the coefficients of variation are equal against each of the alternatives: (a) some populations have different coefficients of variation and (b) the coefficients of variation are ordered. Three nonparametric test statistics are proposed and their asymptotic theory is developed. We compared the proposed tests together with another parametric test using two Monte Carlo studies to estimate their probabilities of Type I error and powers. An illustration of the proposed tests using a real data set is given.  相似文献   

18.
In this paper, we develop a test of the normality assumption of the errors using the residuals from a nonparametric kernel regression. Contrary to the existing tests based on the residuals from a parametric regression, our test is thus robust to misspecification of the regression function. The test statistic proposed here is a Bera-Jarque type test of skewness and kurtosis. We show that the test statistic has the usual x 2(2) limit distribution under the null hypothesis. In contrast to the results of Rilstone (1992), we provide a set of primitive assumptions that allow weakly dependent observations and data dependent bandwidth parameters. We also establish consistency property of the test. Monte Carlo experiments show that our test has reasonably good size and power performance in small samples and perfornu better than some of the alternative tests in various situations.  相似文献   

19.
ABSTRACT

For two-way layouts in a between-subjects analysis of variance design, the parametric F-test is compared with seven nonparametric methods: rank transform (RT), inverse normal transform (INT), aligned rank transform (ART), a combination of ART and INT, Puri & Sen's L statistic, Van der Waerden, and Akritas and Brunners ANOVA-type statistics (ATS). The type I error rates and the power are computed for 16 normal and nonnormal distributions, with and without homogeneity of variances, for balanced and unbalanced designs as well as for several models including the null and the full model. The aim of this study is to identify a method that is applicable without too much testing for all the attributes of the plot. The Van der Waerden test shows the overall best performance though there are some situations in which it is disappointing. The Puri & Sen's and the ATS tests show generally very low power. These two and the other methods cannot keep the type I error rate under control in too many situations. Especially in the case of lognormal distributions, the use of any of the rank-based procedures can be dangerous for cell sizes above 10. As already shown by many other authors, nonnormal distributions do not violate the parametric F-test, but unequal variances do, and heterogeneity of variances leads to an inflated error rate more or less also for the nonparametric methods. Finally, it should be noted that some procedures show rising error rates with increasing cell sizes, the ART, especially for discrete variables, and the RT, Puri & Sen, and the ATS in the cases of heteroscedasticity.  相似文献   

20.
The process comparing the empirical cumulative distribution function of the sample with a parametric estimate of the cumulative distribution function is known as the empirical process with estimated parameters and has been extensively employed in the literature for goodness‐of‐fit testing. The simplest way to carry out such goodness‐of‐fit tests, especially in a multivariate setting, is to use a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters, or the dimension of the data increase. An alternative resampling technique based on a fast weighted bootstrap is proposed in this paper, and is studied both theoretically and empirically. The outcome of this work is a generic and computationally efficient multiplier goodness‐of‐fit procedure that can be used as a large‐sample alternative to the parametric bootstrap. In order to approximately determine how large the sample size needs to be for the parametric and weighted bootstraps to have roughly equivalent powers, extensive Monte Carlo experiments are carried out in dimension one, two and three, and for models containing up to nine parameters. The computational gains resulting from the use of the proposed multiplier goodness‐of‐fit procedure are illustrated on trivariate financial data. A by‐product of this work is a fast large‐sample goodness‐of‐fit procedure for the bivariate and trivariate t distribution whose degrees of freedom are fixed. The Canadian Journal of Statistics 40: 480–500; 2012 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号