首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
No-constant strategy is considered for the heterogenous autoregressive (HAR) model of Corsi, which is motivated by smaller biases of its estimated HAR coefficients than those of the constant HAR model. The no-constant model produces better forecasts than the constant model for four real datasets of the realized volatilities (RVs) of some major assets. Robustness of forecast improvement is verified for other functions of realized variance and log RV and for the extended datasets of all 20 RVs of Oxford-Man realized library. A Monte Carlo simulation also reveals improved forecasts for some historic HAR model estimated by Corsi.  相似文献   

2.
Previous time series applications of qualitative response models have ignored features of the data, such as conditional heteroscedasticity, that are routinely addressed in time series econometrics of financial data. This article addresses this issue by adding Markov-switching heteroscedasticity to a dynamic ordered probit model of discrete changes in the bank prime lending rate and estimating via the Gibbs sampler. The dynamic ordered probit model of Eichengreen, Watson, and Grossman allows for serial autocorrelation in probit analysis of a time series, and this article demonstrates the relative simplicity of estimating a dynamic ordered probit using the Gibbs sampler instead of the Eichengreen et al. maximum likelihood procedure. In addition, the extension to regime-switching parameters and conditional heteroscedasticity is easy to implement under Gibbs sampling. The article compares tests of goodness of fit between dynamic ordered probit models of the prime rate that have constant variance and conditional heteroscedasticity.  相似文献   

3.
We consider a Bayesian deterministically trending dynamic time series model with heteroscedastic error variance, in which there exist multiple structural changes in level, trend and error variance, but the number of change-points and the timings are unknown. For a Bayesian analysis, a truncated Poisson prior and conjugate priors are used for the number of change-points and the distributional parameters, respectively. To identify the best model and estimate the model parameters simultaneously, we propose a new method by sequentially making use of the Gibbs sampler in conjunction with stochastic approximation Monte Carlo simulations, as an adaptive Monte Carlo algorithm. The numerical results are in favor of our method in terms of the quality of estimates.  相似文献   

4.
Realized volatility computed from high-frequency data is an important measure for many applications in finance, and its dynamics have been widely investigated. Recent notable advances that perform well include the heterogeneous autoregressive (HAR) model which can approximate long memory, is very parsimonious, is easy to estimate, and features good out-of-sample performance. We prove that the least absolute shrinkage and selection operator (Lasso) recovers the lags structure of the HAR model asymptotically if it is the true model, and we present Monte Carlo evidence in finite samples. The HAR model's lags structure is not fully in agreement with the one found using the Lasso on real data. Moreover, we provide empirical evidence that there are two clear breaks in structure for most of the assets we consider. These results bring into question the appropriateness of the HAR model for realized volatility. Finally, in an out-of-sample analysis, we show equal performance of the HAR model and the Lasso approach.  相似文献   

5.
This article presents a novel Bayesian analysis for linear mixed-effects models. The analysis is based on the method of partial collapsing that allows some components to be partially collapsed out of a model. The resulting partially collapsed Gibbs (PCG) sampler constructed to fit linear mixed-effects models is expected to exhibit much better convergence properties than the corresponding Gibbs sampler. In order to construct the PCG sampler without complicating component updates, we consider the reparameterization of model components by expressing a between-group variance in terms of a within-group variance in a linear mixed-effects model. The proposed method of partial collapsing with reparameterization is applied to the Merton’s jump diffusion model as well as general linear mixed-effects models with proper prior distributions and illustrated using simulated data and longitudinal data on sleep deprivation.  相似文献   

6.
Autoregressive models with switching regime are a frequently used class of nonlinear time series models, which are popular in finance, engineering, and other fields. We consider linear switching autoregressions in which the intercept and variance possibly switch simultaneously, while the autoregressive parameters are structural and hence the same in all states, and we propose quasi‐likelihood‐based tests for a regime switch in this class of models. Our motivation is from financial time series, where one expects states with high volatility and low mean together with states with low volatility and higher mean. We investigate the performance of our tests in a simulation study, and give an application to a series of IBM monthly stock returns. The Canadian Journal of Statistics 40: 427–446; 2012 © 2012 Statistical Society of Canada  相似文献   

7.
Forecast methods for realized volatilities are reviewed. Basic theoretical and empirical features of realized volatilities as well as versions of estimators of realized volatility are briefly investigated. Major forecast models featuring the empirical aspects of persistency and asymmetry are discussed in terms of forecasting models for which the heterogeneous autoregressive (HAR) model is one of the most basic one in the recent literature. Forecast methods addressing the issues of jump, break, implied volatility, and market microstructure noise are reviewed. Forecasting realized covariance matrix is also considered.  相似文献   

8.
In this paper we model the Gaussian errors in the standard Gaussian linear state space model as stochastic volatility processes. We show that conventional MCMC algorithms for this class of models are ineffective, but that the problem can be alleviated by reparameterizing the model. Instead of sampling the unobserved variance series directly, we sample in the space of the disturbances, which proves to lower correlation in the sampler and thus increases the quality of the Markov chain.

Using our reparameterized MCMC sampler, it is possible to estimate an unobserved factor model for exchange rates between a group of n countries. The underlying n + 1 country-specific currency strength factors and the n + 1 currency volatility factors can be extracted using the new methodology. With the factors, a more detailed image of the events around the 1992 EMS crisis is obtained.

We assess the fit of competitive models on the panels of exchange rates with an effective particle filter and find that indeed the factor model is strongly preferred by the data.  相似文献   

9.
Markov-switching models are usually specified under the assumption that all the parameters change when a regime switch occurs. Relaxing this hypothesis and being able to detect which parameters evolve over time is relevant for interpreting the changes in the dynamics of the series, for specifying models parsimoniously, and may be helpful in forecasting. We propose the class of sticky infinite hidden Markov-switching autoregressive moving average models, in which we disentangle the break dynamics of the mean and the variance parameters. In this class, the number of regimes is possibly infinite and is determined when estimating the model, thus avoiding the need to set this number by a model choice criterion. We develop a new Markov chain Monte Carlo estimation method that solves the path dependence issue due to the moving average component. Empirical results on macroeconomic series illustrate that the proposed class of models dominates the model with fixed parameters in terms of point and density forecasts.  相似文献   

10.
This article focuses on simulation-based inference for the time-deformation models directed by a duration process. In order to better capture the heavy tail property of the time series of financial asset returns, the innovation of the observation equation is subsequently assumed to have a Student-t distribution. Suitable Markov chain Monte Carlo (MCMC) algorithms, which are hybrids of Gibbs and slice samplers, are proposed for estimation of the parameters of these models. In the algorithms, the parameters of the models can be sampled either directly from known distributions or through an efficient slice sampler. The states are simulated one at a time by using a Metropolis-Hastings method, where the proposal distributions are sampled through a slice sampler. Simulation studies conducted in this article suggest that our extended models and accompanying MCMC algorithms work well in terms of parameter estimation and volatility forecast.  相似文献   

11.
Long memory has been widely documented for realized financial market volatility. As a novelty, we consider daily realized asset correlations and we investigate whether the observed persistence is (i) due to true long memory (i.e. fractional integration) or (ii) artificially generated by some structural break processes. These two phenomena are difficult to be distinguished in practice. Our empirical results strongly indicate that the hyperbolic decay of the autocorrelation functions of pair-wise realized correlation series is indeed not driven by a truly fractionally integrated process. This finding is robust against user specific parameter choices in the applied test statistic and holds for all 15 considered time series. As a next step, we apply simple models with deterministic level shifts. When selecting the number of breaks, estimating the breakpoints and the corresponding structural break models we find a substantial degree of co-movement between the realized correlation series hinting at co-breaking. The estimated structural break models are interpreted in the light of the historic economic and financial development.  相似文献   

12.
This article proposes a dynamic framework for modeling and forecasting of realized covariance matrices using vine copulas to allow for more flexible dependencies between assets. Our model automatically guarantees positive definiteness of the forecast through the use of a Cholesky decomposition of the realized covariance matrix. We explicitly account for long-memory behavior by using fractionally integrated autoregressive moving average (ARFIMA) and heterogeneous autoregressive (HAR) models for the individual elements of the decomposition. Furthermore, our model incorporates non-Gaussian innovations and GARCH effects, accounting for volatility clustering and unconditional kurtosis. The dependence structure between assets is studied using vine copula constructions, which allow for nonlinearity and asymmetry without suffering from an inflexible tail behavior or symmetry restrictions as in conventional multivariate models. Further, the copulas have a direct impact on the point forecasts of the realized covariances matrices, due to being computed as a nonlinear transformation of the forecasts for the Cholesky matrix. Beside studying in-sample properties, we assess the usefulness of our method in a one-day-ahead forecasting framework, comparing recent types of models for the realized covariance matrix based on a model confidence set approach. Additionally, we find that in Value-at-Risk (VaR) forecasting, vine models require less capital requirements due to smoother and more accurate forecasts.  相似文献   

13.
In this article, we propose a Bayesian approach to estimate the multiple structural change-points in a level and the trend when the number of change-points is unknown. Our formulation of the structural-change model involves a binary discrete variable that indicates the structural change. The determination of the number and the form of structural changes are considered as a model selection issue in Bayesian structural-change analysis. We apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo (SAMC) algorithm, to this structural-change model selection issue. SAMC effectively functions for the complex structural-change model estimation, since it prevents entrapment in local posterior mode. The estimation of the model parameters in each regime is made using the Gibbs sampler after each change-point is detected. The performance of our proposed method has been investigated on simulated and real data sets, a long time series of US real gross domestic product, US uses of force between 1870 and 1994 and 1-year time series of temperature in Seoul, South Korea.  相似文献   

14.
The Volatility of Realized Volatility   总被引:4,自引:1,他引:3  
In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. The construction of “observable” or realized volatility series from intra-day transaction data and the use of standard time-series techniques has lead to promising strategies for modeling and predicting (daily) volatility. In this article, we show that the residuals of commonly used time-series models for realized volatility and logarithmic realized variance exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance for modeling and forecasting realized volatility. In an empirical application for S&P 500 index futures we show that allowing for time-varying volatility of realized volatility and logarithmic realized variance substantially improves the fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting.  相似文献   

15.
In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. The construction of “observable” or realized volatility series from intra-day transaction data and the use of standard time-series techniques has lead to promising strategies for modeling and predicting (daily) volatility. In this article, we show that the residuals of commonly used time-series models for realized volatility and logarithmic realized variance exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance for modeling and forecasting realized volatility. In an empirical application for S&P 500 index futures we show that allowing for time-varying volatility of realized volatility and logarithmic realized variance substantially improves the fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting.  相似文献   

16.
Due to computational challenges and non-availability of conjugate prior distributions, Bayesian variable selection in quantile regression models is often a difficult task. In this paper, we address these two issues for quantile regression models. In particular, we develop an informative stochastic search variable selection (ISSVS) for quantile regression models that introduces an informative prior distribution. We adopt prior structures which incorporate historical data into the current data by quantifying them with a suitable prior distribution on the model parameters. This allows ISSVS to search more efficiently in the model space and choose the more likely models. In addition, a Gibbs sampler is derived to facilitate the computation of the posterior probabilities. A major advantage of ISSVS is that it avoids instability in the posterior estimates for the Gibbs sampler as well as convergence problems that may arise from choosing vague priors. Finally, the proposed methods are illustrated with both simulation and real data.  相似文献   

17.
Label switching is a well-known and fundamental problem in Bayesian estimation of finite mixture models. It arises when exploring complex posterior distributions by Markov Chain Monte Carlo (MCMC) algorithms, because the likelihood of the model is invariant to the relabelling of mixture components. If the MCMC sampler randomly switches labels, then it is unsuitable for exploring the posterior distributions for component-related parameters. In this paper, a new procedure based on the post-MCMC relabelling of the chains is proposed. The main idea of the method is to perform a clustering technique on the similarity matrix, obtained through the MCMC sample, whose elements are the probabilities that any two units in the observed sample are drawn from the same component. Although it cannot be generalized to any situation, it may be handy in many applications because of its simplicity and very low computational burden.  相似文献   

18.
Summary.  We estimate cause–effect relationships in empirical research where exposures are not completely controlled, as in observational studies or with patient non-compliance and self-selected treatment switches in randomized clinical trials. Additive and multiplicative structural mean models have proved useful for this but suffer from the classical limitations of linear and log-linear models when accommodating binary data. We propose the generalized structural mean model to overcome these limitations. This is a semiparametric two-stage model which extends the structural mean model to handle non-linear average exposure effects. The first-stage structural model describes the causal effect of received exposure by contrasting the means of observed and potential exposure-free outcomes in exposed subsets of the population. For identification of the structural parameters, a second stage 'nuisance' model is introduced. This takes the form of a classical association model for expected outcomes given observed exposure. Under the model, we derive estimating equations which yield consistent, asymptotically normal and efficient estimators of the structural effects. We examine their robustness to model misspecification and construct robust estimators in the absence of any exposure effect. The double-logistic structural mean model is developed in more detail to estimate the effect of observed exposure on the success of treatment in a randomized controlled blood pressure reduction trial with self-selected non-compliance.  相似文献   

19.
This article introduces a new specification for the heterogenous autoregressive (HAR) model for the realized volatility of S&P 500 index returns. In this modeling framework, the coefficients of the HAR are allowed to be time-varying with unspecified functional forms. The local linear method with the cross-validation (CV) bandwidth selection is applied to estimate the time-varying coefficient HAR (TVC-HAR) model, and a bootstrap method is used to construct the point-wise confidence bands for the coefficient functions. Furthermore, the asymptotic distribution of the proposed local linear estimators of the TVC-HAR model is established under some mild conditions. The results of the simulation study show that the local linear estimator with CV bandwidth selection has favorable finite sample properties. The outcomes of the conditional predictive ability test indicate that the proposed nonparametric TVC-HAR model outperforms the parametric HAR and its extension to HAR with jumps and/or GARCH in terms of multi-step out-of-sample forecasting, in particular in the post-2003 crisis and 2007 global financial crisis (GFC) periods, during which financial market volatilities were unduly high.  相似文献   

20.
In this article we investigate the relationship between the EM algorithm and the Gibbs sampler. We show that the approximate rate of convergence of the Gibbs sampler by Gaussian approximation is equal to that of the corresponding EM-type algorithm. This helps in implementing either of the algorithms as improvement strategies for one algorithm can be directly transported to the other. In particular, by running the EM algorithm we know approximately how many iterations are needed for convergence of the Gibbs sampler. We also obtain a result that under certain conditions, the EM algorithm used for finding the maximum likelihood estimates can be slower to converge than the corresponding Gibbs sampler for Bayesian inference. We illustrate our results in a number of realistic examples all based on the generalized linear mixed models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号