共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper it will be shown that the exponent p in Lp,-norm P estimation as an explicit function of the sample kurtosis is asymptotically normally distributed. The asymptotic variances of p for two sllch formulae are derived. An alternative formula which implicitly relates p to the sample kurtosis is also discussed. An adaptive procedure for the selection of p when the underlying error distribution is unknown is also suggested. This procedure is used to verify empirically that the asymptotic distribution of p is normal. 相似文献
2.
The estimation of the reliability function of the Weibull lifetime model is considered in the presence of uncertain prior information (not in the form of prior distribution) on the parameter of interest. This information is assumed to be available in some sort of a realistic conjecture. In this article, we focus on how to combine sample and non-sample information together in order to achieve improved estimation performance. Three classes of point estimatiors, namely, the unrestricted estimator, the shrinkage estimator and shrinkage preliminary test estimator (SPTE) are proposed. Their asymptotic biases and mean-squared errors are derived and compared. The relative dominance picture of the estimators is presented. Interestingly, the proposed SPTE dominates the unrestricted estimator in a range that is wider than that of the usual preliminary test estimator. A small-scale simulation experiment is used to examine the small sample properties of the proposed estimators. Our simulation investigations have provided strong evidence that corroborates with asymptotic theory. The suggested estimation methods are applied to a published data set to illustrate the performance of the estimators in a real-life situation. 相似文献
3.
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case. The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors. 相似文献
4.
A comparison of some robust, adaptive, and partially adaptive estimators of regression models 总被引:2,自引:0,他引:2
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.
The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors. 相似文献
The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors. 相似文献
5.
In the present article, we consider the calibration procedure for the Warner's and Mangat–Singh's (:M–S) randomized response survey estimators using auxiliary information associated with the variable of interest. In the calibration procedure, we can use auxiliary information such as age, gender, and income for the respondents of RR questions from an external source, and then the classical RR estimators can be improved with respect to the problems of noncoverage or nonresponse. From the efficiency comparison study, we show that the calibration estimators are more efficient than those of Warner's and Mangat-Singh's when the known population cell and marginal counts of auxiliary information are used for the calibration procedure. 相似文献
6.
《Journal of Statistical Computation and Simulation》2012,82(1-2):25-36
The sensitivity of-a Bayesian inference to prior assumptions is examined by Monte Carlo simulation for the beta-binomial conjugate family of distributions. Results for the effect on a Bayesian probability interval of the binomial parameter indicate that the Bayesian inference is for the most part quite sensitive to misspecification of the prior distribution. The magnitude of the sensitivity depends primarily on the difference of assigned means and variances from the respective means and variances of the actually-sampled prior distributions. The effect of a disparity in form between the assigned prior and actually-sampled distributions was less important for the cases tested. 相似文献
7.
校正估计法已被大量运用于抽样调查中,它利用辅助信息构造的校正权重提高了对总体总值(或均值)的估计精度。本文提出了分层抽样中的校正组合比率估计量,并推广到分层双重抽样中。同时给出新估计量的近似方差表达式。最后利用计算机随机模拟验证较正估计量对估计精度的改进。 相似文献
8.
The estimation of the finite population mean in successive occasions is investigated with calibration estimators in this article. We propose several estimators based on calibration techniques with arbitrary sampling design in each of the occasions. Asymptotic variance formulaes are derived for the proposed estimators. The properties of these estimators are studied via a simulation study and using natural populations. 相似文献
9.
10.
M.C. Wang 《统计学通讯:理论与方法》2013,42(2):405-427
A multinomial classification rule is proposed based on a prior-valued smoothing for the state probabilities. Asymptotically, the proposed rule has an error rate that converges uniformly and strongly to that of the Bayes rule. For a fixed sample size the prior-valued smoothing is effective in obtaining reason¬able classifications to the situations such as missing data. Empirically, the proposed rule is compared favorably with other commonly used multinomial classification rules via Monte Carlo sampling experiments 相似文献
11.
This article presents the calibration procedure of the two-phase randomized response (RR) technique for surveying the sensitive characteristic. When the sampling scheme is two-phase or double sampling, auxiliary information known from the entire population can be used, but the auxiliary information should be information available from both the first and second phases of the sample. If there is auxiliary information available from both the first and second phases, then we can improve the ordinary two-phase RR estimator by incorporating this information in the estimation procedure. In this article, we used the new two-step Newton's method for computing unknown constants in the calibration procedure and compared the efficiency of the proposed estimator through some numerical study. 相似文献
12.
《Journal of Statistical Computation and Simulation》2012,82(12):1993-2002
Inference concerning the negative binomial dispersion parameter, denoted by c, is important in many biological and biomedical investigations. Properties of the maximum-likelihood estimator of c and its bias-corrected version have been studied extensively, mainly, in terms of bias and efficiency [W.W. Piegorsch, Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46 (1990), pp. 863–867; S.J. Clark and J.N. Perry, Estimation of the negative binomial parameter κ by maximum quasi-likelihood, Biometrics 45 (1989), pp. 309–316; K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185]. However, not much work has been done on the construction of confidence intervals (C.I.s) for c. The purpose of this paper is to study the behaviour of some C.I. procedures for c. We study, by simulations, three Wald type C.I. procedures based on the asymptotic distribution of the method of moments estimate (mme), the maximum-likelihood estimate (mle) and the bias-corrected mle (bcmle) [K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185] of c. All three methods show serious under-coverage. We further study parametric bootstrap procedures based on these estimates of c, which significantly improve the coverage probabilities. The bootstrap C.I.s based on the mle (Boot-MLE method) and the bcmle (Boot-BCM method) have coverages that are significantly better (empirical coverage close to the nominal coverage) than the corresponding bootstrap C.I. based on the mme, especially for small sample size and highly over-dispersed data. However, simulation results on lengths of the C.I.s show evidence that all three bootstrap procedures have larger average coverage lengths. Therefore, for practical data analysis, the bootstrap C.I. Boot-MLE or Boot-BCM should be used, although Boot-MLE method seems to be preferable over the Boot-BCM method in terms of both coverage and length. Furthermore, Boot-MLE needs less computation than Boot-BCM. 相似文献
13.
Hansen and Hurwitz (1946) technique–based estimator of population total is proposed using the calibration approach under the assumption that the auxiliary variable is negatively correlated with the study variable. The variance estimation is also considered. The two-phase sampling case is also explored. The theoretical results are demonstrated through empirical studies using both generated and real population data. The proposed estimator of population total outperforms the existing estimators in terms of the criteria of relative bias and relative root mean square error. 相似文献
14.
Hideki Nagatsuka N. Balakrishnan 《Journal of Statistical Computation and Simulation》2013,83(10):1915-1931
In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here. 相似文献
15.
Christian H. Weiß 《Statistics》2013,47(3):494-510
The modelling and analysis of count-data time series are areas of emerging interest with various applications in practice. We consider the particular case of the binomial AR(1) model, which is well suited for describing binomial counts with a first-order autoregressive serial dependence structure. We derive explicit expressions for the joint (central) moments and cumulants up to order 4. Then, we apply these results for expressing moments and asymptotic distribution of the squared difference estimator as an alternative to the sample autocovariance. We also analyse the asymptotic distribution of the conditional least-squares estimators of the parameters of the binomial AR(1) model. The finite-sample performance of these estimators is investigated in a simulation study, and we apply them to real data about computerized workstations. 相似文献
16.
George Tzavelas Demosthenes Panagiotakos 《Journal of Statistical Computation and Simulation》2013,83(7):1252-1265
In this paper, statistical inferences for the size-biased Weibull distribution in two different cases are drawn. In the first case where the size r of the bias is considered known, it is proven that the maximum-likelihood estimators (MLEs) always exist. In the second case where the size r is considered as an unknown parameter, the estimating equations for the MLEs are presented and the Fisher information matrix is found. The estimation with the method of moments can be utilized in the case the MLEs do not exist. The advantage of treating r as an unknown parameter is that it allows us to perform tests concerning the existence of size-bias in the sample. Finally a program in Mathematica is written which provides all the statistical results from the procedures developed in this paper. 相似文献
17.
We consider time series models of the MA (moving average) family, and deal with the estimation of the residual variance. Results are known for maximum likelihood estimates under normality, both for known or unknown mean, in which case the asymptotic biases depend on the number of parameters (including the mean), and do not depend on the values of the parameters. For moment estimates the situation is different, because we find that the asymptotic biases depend on the values of the parameters, and become large as they approach the boundary of the region of invertibility. Our approach is to use Taylor series expansions, and the objective is to obtain asymptotic biases with error of o(l/T), where T is the sample size. Simulation results are presented, and corrections for bias suggested. 相似文献
18.
Combining information from multiple surveys by using regression for efficient small domain estimation 总被引:1,自引:0,他引:1
Takis Merkouris 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2010,72(1):27-48
Summary. In sample surveys of finite populations, subpopulations for which the sample size is too small for estimation of adequate precision are referred to as small domains. Demand for small domain estimates has been growing in recent years among users of survey data. We explore the possibility of enhancing the precision of domain estimators by combining comparable information collected in multiple surveys of the same population. For this, we propose a regression method of estimation that is essentially an extended calibration procedure whereby comparable domain estimates from the various surveys are calibrated to each other. We show through analytic results and an empirical study that this method may greatly improve the precision of domain estimators for the variables that are common to these surveys, as these estimators make effective use of increased sample size for the common survey items. The design-based direct estimators proposed involve only domain-specific data on the variables of interest. This is in contrast with small domain (mostly small area) indirect estimators, based on a single survey, which incorporate through modelling data that are external to the targeted small domains. The approach proposed is also highly effective in handling the closely related problem of estimation for rare population characteristics. 相似文献
19.
ABSTRACTUsing the calibration approach, the Hansen and Hurwitz (1946) technique-based estimator is developed for the situation where the information on auxiliary variable is assumed known for the entire population units. The double-sampling case has also been dealt with. Expressions for the estimator of population total, its variance, and variance estimator are developed. The theoretical results are illustrated with the help of simulation studies. Simulation results show that the proposed calibration approach-based estimator outperforms the Hansen and Hurwitz estimator. 相似文献
20.
Joachim Wilde 《Statistical Papers》2008,49(3):471-484
Dagenais in (Econ Lett 63:19–21, 1999) and Lucchetti in (Econ Lett 75:179–185, 2002) have demonstrated that the naive GMM estimator of Grogger in (Econ Lett 33:329–332, 1990) for the probit model with an endogenous regressor is not consistent. This paper completes their discussion by explaining the reason for the inconsistency and presenting a natural solution. Furthermore, the resulting GMM estimator is analyzed in a Monte-Carlo simulation and compared with alternative estimators. 相似文献