首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider data generating structures which can be represented as a Markov switching of nonlinear autoregressive model with considering skew-symmetric innovations such that switching between the states is controlled by a hidden Markov chain. We propose semi-parametric estimators for the nonlinear functions of the proposed model based on a maximum likelihood (ML) approach and study sufficient conditions for geometric ergodicity of the process. Also, an Expectation-Maximization type optimization for obtaining the ML estimators are presented. A simulation study and a real world application are also performed to illustrate and evaluate the proposed methodology.  相似文献   

2.
ABSTRACT

Clustered observations such as longitudinal data are often analysed with generalized linear mixed models (GLMM). Approximate Bayesian inference for GLMMs with normally distributed random effects can be done using integrated nested Laplace approximations (INLA), which is in general known to yield accurate results. However, INLA is known to be less accurate for GLMMs with binary response. For longitudinal binary response data it is common that patients do not change their health state during the study period. In this case the grouping covariate perfectly predicts a subset of the response, which implies a monotone likelihood with diverging maximum likelihood (ML) estimates for cluster-specific parameters. This is known as quasi-complete separation. In this paper we demonstrate, based on longitudinal data from a randomized clinical trial and two simulations, that the accuracy of INLA decreases with increasing degree of cluster-specific quasi-complete separation. Comparing parameter estimates by INLA, Markov chain Monte Carlo sampling and ML shows that INLA increasingly deviates from the other methods in such a scenario.  相似文献   

3.
Information from multiple informants is frequently used to assess psychopathology. We consider marginal regression models with multiple informants as discrete predictors and a time to event outcome. We fit these models to data from the Stirling County Study; specifically, the models predict mortality from self report of psychiatric disorders and also predict mortality from physician report of psychiatric disorders. Previously, Horton et al. found little relationship between self and physician reports of psychopathology, but that the relationship of self report of psychopathology with mortality was similar to that of physician report of psychopathology with mortality. Generalized estimating equations (GEE) have been used to fit marginal models with multiple informant covariates; here we develop a maximum likelihood (ML) approach and show how it relates to the GEE approach. In a simple setting using a saturated model, the ML approach can be constructed to provide estimates that match those found using GEE. We extend the ML technique to consider multiple informant predictors with missingness and compare the method to using inverse probability weighted (IPW) GEE. Our simulation study illustrates that IPW GEE loses little efficiency compared with ML in the presence of monotone missingness. Our example data has non-monotone missingness; in this case, ML offers a modest decrease in variance compared with IPW GEE, particularly for estimating covariates in the marginal models. In more general settings, e.g., categorical predictors and piecewise exponential models, the likelihood parameters from the ML technique do not have the same interpretation as the GEE. Thus, the GEE is recommended to fit marginal models for its flexibility, ease of interpretation and comparable efficiency to ML in the presence of missing data.  相似文献   

4.
Given data sampled from a number of variables, one is often interested in the underlying causal relationships in the form of a directed acyclic graph. In the general case, without interventions on some of the variables it is only possible to identify the graph up to its Markov equivalence class. However, in some situations one can find the true causal graph just from observational data, for example, in structural equation models with additive noise and nonlinear edge functions. Most current methods for achieving this rely on nonparametric independence tests. One of the problems there is that the null hypothesis is independence, which is what one would like to get evidence for. We take a different approach in our work by using a penalized likelihood as a score for model selection. This is practically feasible in many settings and has the advantage of yielding a natural ranking of the candidate models. When making smoothness assumptions on the probability density space, we prove consistency of the penalized maximum likelihood estimator. We also present empirical results for simulated scenarios and real two-dimensional data sets (cause–effect pairs) where we obtain similar results as other state-of-the-art methods.  相似文献   

5.
We show that smoothing spline, intrinsic autoregression (IAR) and state-space model can be formulated as partially specified random-effect model with singular precision (SP). Various fitting methods have been suggested for the aforementioned models and this paper investigates the relationships among them, once the models have been placed under a single framework. Some methods have been previously shown to give the best linear unbiased predictors (BLUPs) under some random-effect models and here we show that they are in fact uniformly BLUPs (UBLUPs) under a class of models that are generated by the SP of random effects. We offer some new interpretations of the UBLUPs under models of SP and define BLUE and BLUP in these partially specified models without having to specify the covariance. We also show how the full likelihood inferences for random-effect models can be made for these models, so that the maximum likelihood (ML) and restricted maximum likelihood (REML) estimators can be used for the smoothing parameters in splines, etc.  相似文献   

6.
Network meta‐analysis can be implemented by using arm‐based or contrast‐based models. Here we focus on arm‐based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial‐by‐treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi‐likelihood/pseudo‐likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood reduce bias and yield satisfactory coverage rates. Sum‐to‐zero restriction and baseline contrasts for random trial‐by‐treatment interaction effects, as well as a residual ML‐like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood are therefore recommended.  相似文献   

7.
We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation–maximization algorithm for calculating the estimates numerically.  相似文献   

8.
Approximate Bayesian Inference for Survival Models   总被引:1,自引:0,他引:1  
Abstract. Bayesian analysis of time‐to‐event data, usually called survival analysis, has received increasing attention in the last years. In Cox‐type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC‐based inference.  相似文献   

9.
Abstract. The zero‐inflated Poisson regression model is a special case of finite mixture models that is useful for count data containing many zeros. Typically, maximum likelihood (ML) estimation is used for fitting such models. However, it is well known that the ML estimator is highly sensitive to the presence of outliers and can become unstable when mixture components are poorly separated. In this paper, we propose an alternative robust estimation approach, robust expectation‐solution (RES) estimation. We compare the RES approach with an existing robust approach, minimum Hellinger distance (MHD) estimation. Simulation results indicate that both methods improve on ML when outliers are present and/or when the mixture components are poorly separated. However, the RES approach is more efficient in all the scenarios we considered. In addition, the RES method is shown to yield consistent and asymptotically normal estimators and, in contrast to MHD, can be applied quite generally.  相似文献   

10.
This note compares a Bayesian Markov chain Monte Carlo approach implemented by Watanabe with a maximum likelihood ML approach based on an efficient importance sampling procedure to estimate dynamic bivariate mixture models. In these models, stock price volatility and trading volume are jointly directed by the unobservable number of price-relevant information arrivals, which is specified as a serially correlated random variable. It is shown that the efficient importance sampling technique is extremely accurate and that it produces results that differ significantly from those reported by Watanabe.  相似文献   

11.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

12.
There are many methods for analyzing longitudinal ordinal response data with random dropout. These include maximum likelihood (ML), weighted estimating equations (WEEs), and multiple imputations (MI). In this article, using a Markov model where the effect of previous response on the current response is investigated as an ordinal variable, the likelihood is partitioned to simplify the use of existing software. Simulated data, generated to present a three-period longitudinal study with random dropout, are used to compare performance of ML, WEE, and MI methods in terms of standardized bias and coverage probabilities. These estimation methods are applied to a real medical data set.  相似文献   

13.
Summary.  The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.  相似文献   

14.
Abstract.  Much recent methodological progress in the analysis of infectious disease data has been due to Markov chain Monte Carlo (MCMC) methodology. In this paper, it is illustrated that rejection sampling can also be applied to a family of inference problems in the context of epidemic models, avoiding the issues of convergence associated with MCMC methods. Specifically, we consider models for epidemic data arising from a population divided into households. The models allow individuals to be potentially infected both from outside and from within the household. We develop methodology for selection between competing models via the computation of Bayes factors. We also demonstrate how an initial sample can be used to adjust the algorithm and improve efficiency. The data are assumed to consist of the final numbers ultimately infected within a sample of households in some community. The methods are applied to data taken from outbreaks of influenza.  相似文献   

15.
16.
Bayesian methods are often used to reduce the sample sizes and/or increase the power of clinical trials. The right choice of the prior distribution is a critical step in Bayesian modeling. If the prior not completely specified, historical data may be used to estimate it. In the empirical Bayesian analysis, the resulting prior can be used to produce the posterior distribution. In this paper, we describe a Bayesian Poisson model with a conjugate Gamma prior. The parameters of Gamma distribution are estimated in the empirical Bayesian framework under two estimation schemes. The straightforward numerical search for the maximum likelihood (ML) solution using the marginal negative binomial distribution is unfeasible occasionally. We propose a simplification to the maximization procedure. The Markov Chain Monte Carlo method is used to create a set of Poisson parameters from the historical count data. These Poisson parameters are used to uniquely define the Gamma likelihood function. Easily computable approximation formulae may be used to find the ML estimations for the parameters of gamma distribution. For the sample size calculations, the ML solution is replaced by its upper confidence limit to reflect an incomplete exchangeability of historical trials as opposed to current studies. The exchangeability is measured by the confidence interval for the historical rate of the events. With this prior, the formula for the sample size calculation is completely defined. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

17.
Hierarchical generalized linear models (HGLMs) have become popular in data analysis. However, their maximum likelihood (ML) and restricted maximum likelihood (REML) estimators are often difficult to compute, especially when the random effects are correlated; this is because obtaining the likelihood function involves high-dimensional integration. Recently, an h-likelihood method that does not involve numerical integration has been proposed. In this study, we show how an h-likelihood method can be implemented by modifying the existing ML and REML procedures. A small simulation study is carried out to investigate the performances of the proposed methods for HGLMs with correlated random effects.  相似文献   

18.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

19.
The importance of the dispersion parameter in counts occurring in toxicology, biology, clinical medicine, epidemiology, and other similar studies is well known. A couple of procedures for the construction of confidence intervals (CIs) of the dispersion parameter have been investigated, but little attention has been paid to the accuracy of its CIs. In this paper, we introduce the profile likelihood (PL) approach and the hybrid profile variance (HPV) approach for constructing the CIs of the dispersion parameter for counts based on the negative binomial model. The non-parametric bootstrap (NPB) approach based on the maximum likelihood (ML) estimates of the dispersion parameter is also considered. We then compare our proposed approaches with an asymptotic approach based on the ML and the restricted ML (REML) estimates of the dispersion parameter as well as the parametric bootstrap (PB) approach based on the ML estimates of the dispersion parameter. As assessed by Monte Carlo simulations, the PL approach has the best small-sample performance, followed by the REML, HPV, NPB, and PB approaches. Three examples to biological count data are presented.  相似文献   

20.
ABSTRACT

In this article we introduce a new missing data model, based on a standard parametric Hidden Markov Model (HMM), for which information on the latent Markov chain is given since this one reaches a fixed state (and until it leaves this state). We study, under mild conditions, the consistency and asymptotic normality of the maximum likelihood estimator. We point out also that the underlying Markov chain does not need to be ergodic, and that identifiability of the model is not tractable in a simple way (unlike standard HMMs), but can be studied using various technical arguments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号