首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

2.
In this paper we consider an acceptance-rejection (AR) sampler based on deterministic driver sequences. We prove that the discrepancy of an N element sample set generated in this way is bounded by \(\mathcal {O} (N^{-2/3}\log N)\), provided that the target density is twice continuously differentiable with non-vanishing curvature and the AR sampler uses the driver sequence \(\mathcal {K}_M= \{( j \alpha , j \beta ) ~~ mod~~1 \mid j = 1,\ldots ,M\},\) where \(\alpha ,\beta \) are real algebraic numbers such that \(1,\alpha ,\beta \) is a basis of a number field over \(\mathbb {Q}\) of degree 3. For the driver sequence \(\mathcal {F}_k= \{ ({j}/{F_k}, \{{jF_{k-1}}/{F_k}\} ) \mid j=1,\ldots , F_k\},\) where \(F_k\) is the k-th Fibonacci number and \(\{x\}=x-\lfloor x \rfloor \) is the fractional part of a non-negative real number x, we can remove the \(\log \) factor to improve the convergence rate to \(\mathcal {O}(N^{-2/3})\), where again N is the number of samples we accepted. We also introduce a criterion for measuring the goodness of driver sequences. The proposed approach is numerically tested by calculating the star-discrepancy of samples generated for some target densities using \(\mathcal {K}_M\) and \(\mathcal {F}_k\) as driver sequences. These results confirm that achieving a convergence rate beyond \(N^{-1/2}\) is possible in practice using \(\mathcal {K}_M\) and \(\mathcal {F}_k\) as driver sequences in the acceptance-rejection sampler.  相似文献   

3.
Estimation of the time-average variance constant (TAVC) of a stationary process plays a fundamental role in statistical inference for the mean of a stochastic process. Wu (2009) proposed an efficient algorithm to recursively compute the TAVC with \(O(1)\) memory and computational complexity. In this paper, we propose two new recursive TAVC estimators that can compute TAVC estimate with \(O(1)\) computational complexity. One of them is uniformly better than Wu’s estimator in terms of asymptotic mean squared error (MSE) at a cost of slightly higher memory complexity. The other preserves the \(O(1)\) memory complexity and is better then Wu’s estimator in most situations. Moreover, the first estimator is nearly optimal in the sense that its asymptotic MSE is \(2^{10/3}3^{-2} \fallingdotseq 1.12\) times that of the optimal off-line TAVC estimator.  相似文献   

4.
The indicator function is an effective tool in studying factorial designs. This paper presents some lower bounds of centered \(L_2\)-discrepancy through indicator function. Some new lower bounds of centered \(L_2\)-discrepancy for \(2^{s-k}\) designs and their complementary designs are given. Numerical results show that our lower bounds are tight and better than the existing results.  相似文献   

5.
We consider the problem of recovering a distribution function on the real line from observations additively contaminated with errors following the standard Laplace distribution. Assuming that the latent distribution is completely unknown leads to a nonparametric deconvolution problem. We begin by studying the rates of convergence relative to the \(L^2\)-norm and the Hellinger metric for the direct problem of estimating the sampling density, which is a mixture of Laplace densities with a possibly unbounded set of locations: the rate of convergence for the Bayes’ density estimator corresponding to a Dirichlet process prior over the space of all mixing distributions on the real line matches, up to a logarithmic factor, with the \(n^{-3/8}\log ^{1/8}n\) rate for the maximum likelihood estimator. Then, appealing to an inversion inequality translating the \(L^2\)-norm and the Hellinger distance between general kernel mixtures, with a kernel density having polynomially decaying Fourier transform, into any \(L^p\)-Wasserstein distance, \(p\ge 1\), between the corresponding mixing distributions, provided their Laplace transforms are finite in some neighborhood of zero, we derive the rates of convergence in the \(L^1\)-Wasserstein metric for the Bayes’ and maximum likelihood estimators of the mixing distribution. Merging in the \(L^1\)-Wasserstein distance between Bayes and maximum likelihood follows as a by-product, along with an assessment on the stochastic order of the discrepancy between the two estimation procedures.  相似文献   

6.
In this work we provide a decomposition by sources of the inequality index \(\zeta \) defined by Zenga (Giornale degli Economisti e Annali di economia 43(5–6):301–326, 1984). The source contributions are obtained with the method proposed in Zenga et al. (Stat Appl X(1):3–31, 2012) and Zenga (Stat Appl XI(2):133–161, 2013), that allows to compare different inequality measures. This method is based on the decomposition of inequality curves. To apply this decomposition to the index \(\zeta \) and its inequality curve, we adapt the method to the “cograduation” table. Moreover, we consider the case of linear transformation of sources and analyse the corresponding results.  相似文献   

7.
This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire d-dimensional distribution is approximately preserved under random projections by reducing the number of data points from n to \(k\in O({\text {poly}}(d/\varepsilon ))\) in the case \(n\gg d\). Under mild assumptions, we prove that evaluating a Gaussian likelihood function based on the projected data instead of the original data yields a \((1+O(\varepsilon ))\)-approximation in terms of the \(\ell _2\) Wasserstein distance. Our main result shows that the posterior distribution of Bayesian linear regression is approximated up to a small error depending on only an \(\varepsilon \)-fraction of its defining parameters. This holds when using arbitrary Gaussian priors or the degenerate case of uniform distributions over \(\mathbb {R}^d\) for \(\beta \). Our empirical evaluations involve different simulated settings of Bayesian linear regression. Our experiments underline that the proposed method is able to recover the regression model up to small error while considerably reducing the total running time.  相似文献   

8.
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form \(X = g(\mathbf {U})\) where g is a deterministic function and \(\mathbf {U}\) can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists \(k \in \mathbb {R}> 1\) such that \({\text {E}}\left[ X^k \right] < \infty \). Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.  相似文献   

9.
We consider kernel methods to construct nonparametric estimators of a regression function based on incomplete data. To tackle the presence of incomplete covariates, we employ Horvitz–Thompson-type inverse weighting techniques, where the weights are the selection probabilities. The unknown selection probabilities are themselves estimated using (1) kernel regression, when the functional form of these probabilities are completely unknown, and (2) the least-squares method, when the selection probabilities belong to a known class of candidate functions. To assess the overall performance of the proposed estimators, we establish exponential upper bounds on the \(L_p\) norms, \(1\le p<\infty \), of our estimators; these bounds immediately yield various strong convergence results. We also apply our results to deal with the important problem of statistical classification with partially observed covariates.  相似文献   

10.
This paper introduces a finite mixture of canonical fundamental skew \(t\) (CFUST) distributions for a model-based approach to clustering where the clusters are asymmetric and possibly long-tailed (in: Lee and McLachlan, arXiv:1401.8182 [statME], 2014b). The family of CFUST distributions includes the restricted multivariate skew \(t\) and unrestricted multivariate skew \(t\) distributions as special cases. In recent years, a few versions of the multivariate skew \(t\) (MST) mixture model have been put forward, together with various EM-type algorithms for parameter estimation. These formulations adopted either a restricted or unrestricted characterization for their MST densities. In this paper, we examine a natural generalization of these developments, employing the CFUST distribution as the parametric family for the component distributions, and point out that the restricted and unrestricted characterizations can be unified under this general formulation. We show that an exact implementation of the EM algorithm can be achieved for the CFUST distribution and mixtures of this distribution, and present some new analytical results for a conditional expectation involved in the E-step.  相似文献   

11.
In nonregular problems where the conventional \(n\) out of \(n\) bootstrap is inconsistent, the \(m\) out of \(n\) bootstrap provides a useful remedy to restore consistency. Conventionally, optimal choice of the bootstrap sample size \(m\) is taken to be the minimiser of a frequentist error measure, estimation of which has posed a major difficulty hindering practical application of the \(m\) out of \(n\) bootstrap method. Relatively little attention has been paid to a stronger, stochastic, version of the optimal bootstrap sample size, defined as the minimiser of an error measure calculated directly from the observed sample. Motivated by this stronger notion of optimality, we develop procedures for calculating the stochastically optimal value of \(m\). Our procedures are shown to work under special forms of Edgeworth-type expansions which are typically satisfied by statistics of the shrinkage type. Theoretical and empirical properties of our methods are illustrated with three examples, namely the James–Stein estimator, the ridge regression estimator and the post-model-selection regression estimator.  相似文献   

12.
The computation of penalized quantile regression estimates is often computationally intensive in high dimensions. In this paper we propose a coordinate descent algorithm for computing the penalized smooth quantile regression (cdaSQR) with convex and nonconvex penalties. The cdaSQR approach is based on the approximation of the objective check function, which is not differentiable at zero, by a modified check function which is differentiable at zero. Then, using the maximization-minimization trick of the gcdnet algorithm (Yang and Zou in, J Comput Graph Stat 22(2):396–415, 2013), we update each coefficient simply and efficiently. In our implementation, we consider the convex penalties \(\ell _1+\ell _2\) and the nonconvex penalties SCAD (or MCP) \(+ \ell _2\). We establishe the convergence property of the csdSQR with \(\ell _1+\ell _2\) penalty. The numerical results show that our implementation is an order of magnitude faster than its competitors. Using simulations we compare the speed of our algorithm to its competitors. Finally, the performance of our algorithm is illustrated on three real data sets from diabetes, leukemia and Bardet–Bidel syndrome gene expression studies.  相似文献   

13.
The aim of this paper is to study the asymptotic properties of a class of kernel conditional mode estimates whenever functional stationary ergodic data are considered. To be more precise on the matter, in the ergodic data setting, we consider a random elements (XZ) taking values in some semi-metric abstract space \(E\times F\). For a real function \(\varphi \) defined on the space F and \(x\in E\), we consider the conditional mode of the real random variable \(\varphi (Z)\) given the event “\(X=x\)”. While estimating the conditional mode function, say \(\theta _\varphi (x)\), using the well-known kernel estimator, we establish the strong consistency with rate of this estimate uniformly over Vapnik–Chervonenkis classes of functions \(\varphi \). Notice that the ergodic setting offers a more general framework than the usual mixing structure. Two applications to energy data are provided to illustrate some examples of the proposed approach in time series forecasting framework. The first one consists in forecasting the daily peak of electricity demand in France (measured in Giga-Watt). Whereas the second one deals with the short-term forecasting of the electrical energy (measured in Giga-Watt per Hour) that may be consumed over some time intervals that cover the peak demand.  相似文献   

14.
We introduce some new mathematical tools in the analysis of dispersion matrices of the two well-known OLSEs and BLUEs under general linear models with parameter restrictions. We first establish some formulas for calculating the ranks and inertias of the differences of OLSEs’ and BLUEs’ dispersion matrices of parametric functions under the general linear model \({\mathscr {M}}= \{\mathbf{y}, \ \mathbf{X }\pmb {\beta }, \ \pmb {\Sigma }\}\) and the constrained model \({\mathscr {M}}_r = \{\mathbf{y}, \, \mathbf{X }\pmb {\beta }\, | \, \mathbf{A }\pmb {\beta }= \mathbf{b}, \ \pmb {\Sigma }\}\), where \(\mathbf{A }\pmb {\beta }= \mathbf{b}\) is a consistent linear matrix equation for the unknown parameter vector \(\pmb {\beta }\) to satisfy. As applications, we derive necessary and sufficient conditions for many equalities and inequalities of OLSEs’ and BLUEs’ dispersion matrices to hold under \({\mathscr {M}}\) and \({\mathscr {M}}_r\).  相似文献   

15.
Let \(\mathbb{N } = \{1, 2, 3, \ldots \}\) . Let \(\{X, X_{n}; n \in \mathbb N \}\) be a sequence of i.i.d. random variables, and let \(S_{n} = \sum _{i=1}^{n}X_{i}, n \in \mathbb N \) . Then \( S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})\) for some \(\sigma ^{2} < \infty \) whenever, for a subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})\) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when \(\{\sqrt{n}; n \in \mathbb N \}\) is replaced by \(\{\sqrt{na_{n}};n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) . We show that, for given positive nondecreasing sequence \(\{a_{n}; n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) and \(\lim _{n \rightarrow \infty } a_{n+1}/a_{n} = 1\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)\) . In particular, for given \(0 < p < 2\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)\) .  相似文献   

16.
In this article, we introduce two new estimates of the normalizing constant (or marginal likelihood) for partially observed diffusion (POD) processes, with discrete observations. One estimate is biased but non-negative and the other is unbiased but not almost surely non-negative. Our method uses the multilevel particle filter of Jasra et al. (Multilevel particle lter, arXiv:1510.04977, 2015). We show that, under assumptions, for Euler discretized PODs and a given \(\varepsilon >0\) in order to obtain a mean square error (MSE) of \({\mathcal {O}}(\varepsilon ^2)\) one requires a work of \({\mathcal {O}}(\varepsilon ^{-2.5})\) for our new estimates versus a standard particle filter that requires a work of \({\mathcal {O}}(\varepsilon ^{-3})\). Our theoretical results are supported by numerical simulations.  相似文献   

17.
A pair of polychotomous random variables \((Y_1,Y_2)^\top =:{\varvec{Y}}\), where each \(Y_j\) has a totally ordered support, is studied within a penalized generalized linear model framework. We deal with a triangular generating process for \({\varvec{Y}}\), a structure that has been employed in the literature to control for the presence of residual confounding. Differently from previous works, however, the proposed model allows for a semi-parametric estimation of the covariate-response relationships. In this way, the risk of model mis-specification stemming from the imposition of fixed-order polynomial functional forms is also reduced. The proposed estimation methods and related inferential results are finally applied to study the effect of education on alcohol consumption among young adults in the UK.  相似文献   

18.
Let \(\mathbf {X} = (X_1,\ldots ,X_p)\) be a stochastic vector having joint density function \(f_{\mathbf {X}}(\mathbf {x})\) with partitions \(\mathbf {X}_1 = (X_1,\ldots ,X_k)\) and \(\mathbf {X}_2 = (X_{k+1},\ldots ,X_p)\). A new method for estimating the conditional density function of \(\mathbf {X}_1\) given \(\mathbf {X}_2\) is presented. It is based on locally Gaussian approximations, but simplified in order to tackle the curse of dimensionality in multivariate applications, where both response and explanatory variables can be vectors. We compare our method to some available competitors, and the error of approximation is shown to be small in a series of examples using real and simulated data, and the estimator is shown to be particularly robust against noise caused by independent variables. We also present examples of practical applications of our conditional density estimator in the analysis of time series. Typical values for k in our examples are 1 and 2, and we include simulation experiments with values of p up to 6. Large sample theory is established under a strong mixing condition.  相似文献   

19.
The r largest order statistics approach is widely used in extreme value analysis because it may use more information from the data than just the block maxima. In practice, the choice of r is critical. If r is too large, bias can occur; if too small, the variance of the estimator can be high. The limiting distribution of the r largest order statistics, denoted by GEV\(_r\), extends that of the block maxima. Two specification tests are proposed to select r sequentially. The first is a score test for the GEV\(_r\) distribution. Due to the special characteristics of the GEV\(_r\) distribution, the classical chi-square asymptotics cannot be used. The simplest approach is to use the parametric bootstrap, which is straightforward to implement but computationally expensive. An alternative fast weighted bootstrap or multiplier procedure is developed for computational efficiency. The second test uses the difference in estimated entropy between the GEV\(_r\) and GEV\(_{r-1}\) models, applied to the r largest order statistics and the \(r-1\) largest order statistics, respectively. The asymptotic distribution of the difference statistic is derived. In a large scale simulation study, both tests held their size and had substantial power to detect various misspecification schemes. A new approach to address the issue of multiple, sequential hypotheses testing is adapted to this setting to control the false discovery rate or familywise error rate. The utility of the procedures is demonstrated with extreme sea level and precipitation data.  相似文献   

20.
Given a random sample of size \(n\) with mean \(\overline{X} \) and standard deviation \(s\) from a symmetric distribution \(F(x; \mu , \sigma ) = F_{0} (( x- \mu ) / \sigma ) \) with \(F_0\) known, and \(X \sim F(x;\; \mu , \sigma )\) independent of the sample, we show how to construct an expansion \( a_n^{\prime } = \sum _{i=0}^\infty \ c_i \ n^{-i} \) such that \(\overline{X} - s a_n^{\prime } < X < \overline{X} + s a_n^{\prime } \) with a given probability \(\beta \) . The practical value of this result is illustrated by simulation and using a real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号