首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generally, confidence regions for the probabilities of a multinomial population are constructed based on the Pearson χ2 statistic. Morales et al. (Bootstrap confidence regions in multinomial sampling. Appl Math Comput. 2004;155:295–315) considered the bootstrap and asymptotic confidence regions based on a broader family of test statistics known as power-divergence test statistics. In this study, we extend their work and propose penalized power-divergence test statistics-based confidence regions. We only consider small sample sizes where asymptotic properties fail and alternative methods are needed. Both bootstrap and asymptotic confidence regions are constructed. We consider the percentile and the bias corrected and accelerated bootstrap confidence regions. The latter confidence region has not been studied previously for the power-divergence statistics much less for the penalized ones. Designed simulation studies are carried out to calculate average coverage probabilities. Mean absolute deviation between actual and nominal coverage probabilities is used to compare the proposed confidence regions.  相似文献   

2.
We propose a method that integrates bootstrap into the forward search algorithm in the construction of robust confidence intervals for elements of the eigenvectors of the correlation matrix in the presence of outliers. Coverage probability of the bootstrap simultaneous confidence intervals was compared to the coverage probabilities of regular asymptotic confidence region and asymptotic confidence region based on the minimum covariance determinant (MCD) approach through a simulation study. The method produced more stable coverage probabilities for datasets with or without outliers and across several sample sizes compared to approaches based on asymptotic confidence regions.  相似文献   

3.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

4.
We construct bootstrap confidence intervals for smoothing spline estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from .exponential families. Several vari- ations of bootstrap confidence intervals are considered and compared. We find that the commonly used ootstrap percentile intervals are inferior to the T intervals and to intervals based on bootstrap estimation of mean squared errors. The best variations of the bootstrap confidence intervals behave similar to the well known Bayesian confidence intervals. These bootstrap confidence intervals have an average coverage probability across the function being estimated, as opposed to a pointwise property.  相似文献   

5.
Based on record values, point and interval estimators are proposed in this paper for the parameters of a general lower-truncated family of distributions. Maximum likelihood and bias-corrected estimators are obtained for unknown model parameters. Based on a sufficient and complete statistic, the bias-corrected estimator is also shown to be uniformly minimum variance unbiased estimator. Different exact confidence intervals and exact confidence regions are constructed for the both model and truncated parameters, and other confidence interval estimates based on asymptotic distribution theory and bootstrap approaches are obtained as well. Finally, two real-life examples and a numerical study are presented to illustrate the performance of our methods.  相似文献   

6.
The wild bootstrap is a nonparametric tool that can be used to estimate a sampling distribution in the presence of heteroscedastic errors. In particular, the wild bootstrap enables us to compute confidence regions for regression parameters under non-i.i.d. models. While the wild bootstrap may perform well in these settings, its obvious drawback is a lack of computational efficiency. The wild bootstrap requires a large number of bootstrap replications, making the use of this tool impractical when dealing with big data. We introduce the analytic wild bootstrap (ANWB), which provides a nonparametric alternative way of constructing confidence regions for regression parameters. The ANWB is superior to the wild bootstrap from a computational standpoint while exhibiting similar finite-sample performance. We report simulation results for both least squares and ridge regression. Additionally, we test the ANWB on a real dataset and compare its performance with that of other standard approaches.  相似文献   

7.
It is widely known that bootstrap failure can often be remedied by using a technique known as the ' m out of n ' bootstrap, by which a smaller number, m say, of observations are resampled from the original sample of size n . In successful cases of the bootstrap, the m out of n bootstrap is often deemed unnecessary. We show that the problem of constructing nonparametric confidence intervals is an exceptional case. By considering a new class of m out of n bootstrap confidence limits, we develop a computationally efficient approach based on the double bootstrap to construct the optimal m out of n bootstrap intervals. We show that the optimal intervals have a coverage accuracy which is comparable with that of the classical double-bootstrap intervals, and we conduct a simulation study to examine their performance. The results are in general very encouraging. Alternative approaches which yield even higher order accuracy are also discussed.  相似文献   

8.
The hybrid bootstrap uses resampling ideas to extend the duality approach to the interval estimation for a parameter of interest when there are nuisance parameters. The confidence region constructed by the hybrid bootstrap may perform much better than the ordinary bootstrap region in a situation where the data provide substantial information about the nuisance parameter, but limited information about the parameter of interest. We apply this method to estimate the post-change mean after a change is detected by a stopping procedure in a sequence of independent normal variables. Since distribution theory in change point problems is generally a challenge, we use bootstrap simulation to find empirical distributions of test statistics and calculate critical thresholds. Both likelihood ratio and Bayesian test statistics are considered to set confidence regions for post-change means in the normal model. In the simulation studies, the performance of hybrid regions are compared with that of ordinary bootstrap regions in terms of the widths and coverage probabilities of confidence intervals.  相似文献   

9.
The main objective of this work is to evaluate the performance of confidence intervals, built using the deviance statistic, for the hyperparameters of state space models. The first procedure is a marginal approximation to confidence regions, based on the likelihood test, and the second one is based on the signed root deviance profile. Those methods are computationally efficient and are not affected by problems such as intervals with limits outside the parameter space, which can be the case when the focus is on the variances of the errors. The procedures are compared to the usual approaches existing in the literature, which includes the method based on the asymptotic distribution of the maximum likelihood estimator, as well as bootstrap confidence intervals. The comparison is performed via a Monte Carlo study, in order to establish empirically the advantages and disadvantages of each method. The results show that the methods based on the deviance statistic possess a better coverage rate than the asymptotic and bootstrap procedures.  相似文献   

10.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

11.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of two competing products with regard to their reliability. In this article, we consider two exponential populations and when joint progressive Type-II censoring is implemented on the two samples. We then derive the moment generating functions and the exact distributions of the maximum likelihood estimators (MLEs) of the mean lifetimes of the two exponential populations under such a joint progressive Type-II censoring. We then discuss the exact lower confidence bounds, exact confidence intervals, and simultaneous confidence regions. Next, we discuss the corresponding approximate results based on the asymptotic normality of the MLEs as well as those based on the Bayesian method. All these confidence intervals and regions are then compared by means of Monte Carlo simulations with those obtained from bootstrap methods. Finally, an illustrative example is presented in order to illustrate all the methods of inference discussed here.  相似文献   

12.
The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log‐likelihood ratio is asymptotically a weighted sum of chi‐square variables with unknown weights. They obtain an adjusted empirical log‐likelihood ratio which is asymptotically standard chi‐square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log‐likelihood ratio and use its distribution to approximate that of the empirical log‐likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method.  相似文献   

13.
The problem of building bootstrap confidence intervals for small probabilities with count data is addressed. The law of the independent observations is assumed to be a mixture of a given family of power series distributions. The mixing distribution is estimated by nonparametric maximum likelihood and the corresponding mixture is used for resampling. We build percentile-t and Efron percentile bootstrap confidence intervals for the probabilities and we prove their consistency in probability. The new theoretical results are supported by simulation experiments for Poisson and geometric mixtures. We compare percentile-t and Efron percentile bootstrap intervals with eight other bootstrap or asymptotic theory based intervals. It appears that Efron percentile bootstrap intervals outperform the competitors in terms of coverage probability and length.  相似文献   

14.
In this article, we propose a new technique for constructing confidence intervals for the mean of a noisy sequence with multiple change-points. We use the weighted bootstrap to generalize the bootstrap aggregating or bagging estimator. A standard deviation formula for the bagging estimator is introduced, based on which smoothed confidence intervals are constructed. To further improve the performance of the smoothed interval for weak signals, we suggest a strategy of adaptively choosing between the percentile intervals and the smoothed intervals. A new intensity plot is proposed to visualize the pattern of the change-points. We also propose a new change-point estimator based on the intensity plot, which has superior performance in comparison with the state-of-the-art segmentation methods. The finite sample performance of the confidence intervals and the change-point estimator are evaluated through Monte Carlo studies and illustrated with a real data example.  相似文献   

15.
The Hartley‐Rao‐Cochran sampling design is an unequal probability sampling design which can be used to select samples from finite populations. We propose to adjust the empirical likelihood approach for the Hartley‐Rao‐Cochran sampling design. The approach proposed intrinsically incorporates sampling weights, auxiliary information and allows for large sampling fractions. It can be used to construct confidence intervals. In a simulation study, we show that the coverage may be better for the empirical likelihood confidence interval than for standard confidence intervals based on variance estimates. The approach proposed is simple to implement and less computer intensive than bootstrap. The confidence interval proposed does not rely on re‐sampling, linearization, variance estimation, design‐effects or joint inclusion probabilities.  相似文献   

16.
Stute (1993, Consistent estimation under random censorship when covariables are present. Journal of Multivariate Analysis 45, 89–103) proposed a new method to estimate regression models with a censored response variable using least squares and showed the consistency and asymptotic normality for his estimator. This article proposes a new bootstrap-based methodology that improves the performance of the asymptotic interval estimation for the small sample size case. Therefore, we compare the behavior of Stute's asymptotic confidence interval with that of several confidence intervals that are based on resampling bootstrap techniques. In order to build these confidence intervals, we propose a new bootstrap resampling method that has been adapted for the case of censored regression models. We use simulations to study the improvement the performance of the proposed bootstrap-based confidence intervals show when compared to the asymptotic proposal. Simulation results indicate that, for the new proposals, coverage percentages are closer to the nominal values and, in addition, intervals are narrower.  相似文献   

17.
Various bootstrap methods for variance estimation and confidence intervals in complex survey data, where sampling is done without replacement, have been proposed in the literature. The oldest, and perhaps the most intuitively appealing, is the without-replacement bootstrap (BWO) method proposed by Gross (1980). Unfortunately, the BWO method is only applicable to very simple sampling situations. We first introduce extensions of the BWO method to more complex sampling designs. The performance of the BWO and two other bootstrap methods, the rescaling bootstrap (Rao and Wu 1988) and the mirror-match bootstrap (Sitter 1992), are then compared through a simulation study. Together these three methods encompass the various bootstrap proposals.  相似文献   

18.
Standard algorithms for the construction of iterated bootstrap confidence intervals are computationally very demanding, requiring nested levels of bootstrap resampling. We propose an alternative approach to constructing double bootstrap confidence intervals that involves replacing the inner level of resampling by an analytical approximation. This approximation is based on saddlepoint methods and a tail probability approximation of DiCiccio and Martin (1991). Our technique significantly reduces the computational expense of iterated bootstrap calculations. A formal algorithm for the construction of our approximate iterated bootstrap confidence intervals is presented, and some crucial practical issues arising in its implementation are discussed. Our procedure is illustrated in the case of constructing confidence intervals for ratios of means using both real and simulated data. We repeat an experiment of Schenker (1985) involving the construction of bootstrap confidence intervals for a variance and demonstrate that our technique makes feasible the construction of accurate bootstrap confidence intervals in that context. Finally, we investigate the use of our technique in a more complex setting, that of constructing confidence intervals for a correlation coefficient.  相似文献   

19.
We discuss and evaluate bootstrap algorithms for obtaining confidence intervals for parameters in Generalized Linear Models when the data are correlated. The methods are based on a stratified bootstrap and are suited to correlation occurring within “blocks” of data (e.g., individuals within a family, teeth within a mouth, etc.). Application of the intervals to data from a Dutch follow-up study on preterm infants shows the corroborative usefulness of the intervals, while the intervals are seen to be a powerful diagnostic in studying annual measles data. In a simulation study, we compare the coverage rates of the proposed intervals with existing methods (e.g., via Generalized Estimating Equations). In most cases, the bootstrap intervals are seen to perform better than current methods, and are produced in an automatic fashion, so that the user need not know (or have to guess) the dependence structure within a block.  相似文献   

20.
Abstract: The authors derive empirical likelihood confidence regions for the comparison distribution of two populations whose distributions are to be tested for equality using random samples. Another application they consider is to ROC curves, which are used to compare measurements of a diagnostic test from two populations. The authors investigate the smoothed empirical likelihood method for estimation in this context, and empirical likelihood based confidence intervals are obtained by means of the Wilks theorem. A bootstrap approach allows for the construction of confidence bands. The method is illustrated with data analysis and a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号