首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
半参数纵向模型的惩罚二次推断函数估计   总被引:1,自引:3,他引:1  
针对纵向数据半参数模型E(y|x,t)=XTβ+f(t),采用惩罚二次推断函数方法同时估计模型中的回归参数β和未知光滑函数f(t)。首先利用截断幂函数基对未知光滑函数进行基函数展开近似,然后利用惩罚样条的思想构造关于回归参数和基函数系数的惩罚二次推断函数,最小化惩罚二次推断函数便可得到回归参数和基函数系数的惩罚二次推断函数估计。理论结果显示,估计结果具有相合性和渐近正态性,通过数值方法也得到了较好的模拟结果。  相似文献   

2.
文章研究了纵向数据非参数模型y=f(t)+ε,其中f(t)为未知平滑函数,ε为零均值随机误差项.我们选取一组基函数对f(t)进行基函数展开近似,然后构造关于基函数系数的二次推断函数,利用New-ton-Raphson迭代方法得到基函数系数的估计值,进而得到未知平滑函数f(t)的拟合估计.理论结果显示,所得到的基函数系数估计有相合性和渐近正态性.最后通过数值方法得到了较好的模拟结果.  相似文献   

3.
基于纵向数据,研究参数部分协变量含有测量误差的可加部分线性测量误差模型的估计问题,提出了用于模型估计的偏差修正的二次推断函数方法,得到参数部分的估计结果具有相合性、渐近正态性,非参数可加函数的估计结果达到最优收敛速度。数值模拟和实例数据分析结果显示,该模型估计方法在同等条件下要优于广义估计方程方法。理论和数值结果显示,偏差修正的二次推断函数可以有效地处理测量误差和个体内相关性,是一个有效的纵向数据和测量误差数据分析工具,具有一定的理论和应用价值。  相似文献   

4.
赵明涛  许晓丽 《统计研究》2019,36(10):115-128
纵向数据是随着时间变化对个体进行重复观测而得到的一种相关性数据,广泛出现在诸多科学研究领域。在对个体进行观测时,测量误差不可避免,忽略测量误差往往会导致有偏估计。本文利用二次推断函数方法研究关于纵向数据的参数部分和非参数部分协变量均含有测量误差的部分线性变系数测量误差(errors-in-variables, EV)模型的估计问题。利用B样条逼近模型中的未知系数函数,构造关于回归参数和B样条系数的偏差修正的二次推断函数以处理个体内相关性和测量误差,得到回归参数和变系数的偏差修正的二次推断函数估计,然后证明了估计方法和结果的渐近性质。数值模拟和实例数据分析结果显示本文提出的方法具有一定的实用价值。  相似文献   

5.
文章研究纵向数据非参数模型y=f(t)+ε,其中f(t)为未知平滑函数,ε为零均值随机误差项.我们选取一组基函数对f(t)进行展开近似,然后构造关于基函数系数的修正二次推断函数,利用割线法得到基函数系数的估计值,进而得到未知平滑函数f(t)的拟合估计.最后给出基函数系数估计的相合性和渐近正态性,并通过数值方法得到了较好的模拟结果.  相似文献   

6.
对纵向数据变系数模型参数估计问题,文章采用构建惩罚似然函数的方法优化选择估计量,并采用三次样条作为惩罚项来控制其光滑性,通过选择合适的光滑参数优化变系数的估计量;然后讨论估计量的数字特征,并通过计算模拟验证结论。  相似文献   

7.
文章考虑纵向数据下工具变量线性回归模型,基于工具变量和二次推断函数方法,提出了回归参数的经验对数似然比统计量.在一些正则条件下,证明了所提出的经验对数似然比统计量渐近于标准卡方分布,由此构造兴趣参数的置信域.  相似文献   

8.
本文首先讨论了纵向数据部分线性模型yij=xijβ+g(tij)+eij的可行广义最小二乘估计方法及其估计的渐近性质,然后通过统计模拟研究表明我们的估计方法在有限样本情形也有良好的效果.由该方法获得的估计量具有显示解,计算简便,便于实际应用.  相似文献   

9.
 本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models, GPLSIM) 的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量 的初始估计的迭代估计算法。另外本文还通过一组模拟数据的分析对所提出的迭代算法进行了验证。  相似文献   

10.
文章考虑纵向数据下半参数回归模型Yij=XTijβ g(Tij) εij,利用Profile加权最小二乘法和局部线性拟合方法建立了模型中参数分量β和非参数分量g(·)的估计量。在适当的条件下,给出了估计量的渐近性质。  相似文献   

11.
In this article, the partially linear single-index models are discussed based on smoothing spline and average derivative estimation method. This proposed technique consists of two stages: one is to estimate the vector parameter in the linear part using the smoothing cubic spline method, simultaneously, obtaining the estimator of unknown single-index function; the other is to estimate the single-index coefficients in the single-index part by the using average derivative estimator procedure. Some simulated and real examples are presented to illustrate the performance of this method.  相似文献   

12.
In this article, we generalize the partially linear single-index models to the scenario with some endogenous covariates variables. It is well known that the estimators based on the existing methods are often inconsistent because of the endogeneity of covariates. To deal with the endogenous variables, we introduce some auxiliary instrumental variables. A three-stage estimation procedure is proposed for partially linear single-index instrumental variables models. The first stage is to obtain a linear projection of endogenous variables on a set of instrumental variables, the second stage is to estimate the link function by using local linear smoother for given constant parameters, and the last stage is to obtain the estimators of constant parameters based on the estimating equation. Asymptotic normality is established for the proposed estimators. Some simulation studies are undertaken to assess the finite sample performance of the proposed estimation procedure.  相似文献   

13.
We consider a semiparametric method based on partial splines for estimating the unknown function and partially linear regression parameters in partially linear single-index models. Three methods—project pursuit regression (PPR), average derivative estimation (ADE), and a boosting method—are considered for estimating the single-index parameters. Simulations revealed that PPR with partial splines was superior in estimating single-index parameters, while the boosting method with partial splines performed no better than PPR and ADE. All three methods performed similarly in estimating the partially linear regression parameters. The relative performances of the methods are also illustrated using a real-world data example.  相似文献   

14.
15.
Abstract.  We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the non-parametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and non-parametric part of the model have properties parallel to those of parametric GEE, that is, the estimates are efficient if the covariance structure is correctly specified and they are still consistent and asymptotically normal even if the covariance structure is misspecified. By showing that our estimate achieves the semiparametric information bound, we actually establish the efficiency of estimating the parametric part of the model in a stronger sense than what is typically considered for GEE. The semiparametric efficiency of our estimate is obtained by assuming only conditional moment restrictions instead of the strict multivariate Gaussian error assumption.  相似文献   

16.
Empirical-likelihood based inference for the parameters in a generalized partially linear single-index models (GPLSIM) is investigated. Based on the local linear estimators of the nonparametric parts of the GPLSIM, an estimated empirical likelihood-based statistic of the parametric components is proposed. We show that the resulting statistic is asymptotically standard chi-squared distributed, the confidence regions for the parametric components are constructed. Some simulations are conducted to illustrate the proposed method.  相似文献   

17.
This article examines a weighted version of the quantile regression estimator as defined by Koenker and Bassett (1978 Koenker , R. , Bassett , G. ( 1978 ). Regression quantiles . Econometrica 46 : 3350 .[Crossref], [Web of Science ®] [Google Scholar]), adjusted to the case of nonlinear longitudinal data. Using a four-parameter logistic growth function and error terms following an AR(1) model, different weights are used and compared in a simulation study. The findings indicate that the nonlinear quantile regression estimator is performing well, especially for the median regression case, that the differences between the weights are small, and that the estimator performs better when the correlation in the AR(1) model increases. A comparison is also made with the corresponding mean regression estimator, which is found to be less robust. Finally, the estimator is applied to a data set with growth patterns of two genotypes of soybean, which gives some insights into how the quantile regressions provide a more complete picture of the data than the mean regression.  相似文献   

18.
Liang & Zeger's generalized estimating equation approach for analysis of longitudinal data is extended to marginal distributions of dispersion model type. This includes for example the von Mises and simplex distributions, suitable for angles and proportions, respectively. Both modelling of position and joint modelling of position and dispersion is considered, and the method is applied to a set of bird orientation data.  相似文献   

19.
This article considers the estimation and testing of a within-group two-stage least squares (TSLS) estimator for instruments with varying degrees of weakness in a longitudinal (panel) data model. We show that adding the repeated cross-sectional information into a regression model can improve the estimation in weak instruments. Moreover, the consistency and limiting distribution of the TSLS estimator are established when both N and T tend to infinity. Some asymptotically pivotal tests are extended to a longitudinal data model and their asymptotic properties are examined. A Monte Carlo experiment is conducted to evaluate the finite sample performance of the proposed estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号