首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider non-response models for a single categorical response with categorical covariates whose values are always observed. We present Bayesian methods for ignorable models and a particular non-ignorable model, and we argue that standard methods of model comparison are inappropriate for comparing ignorable and non-ignorable models. Uncertainty about ignorability of non-response is incorporated by introducing parameters describing the extent of non-ignorability into a pattern mixture specification and integrating over the prior uncertainty associated with these parameters. Our approach is illustrated using polling data from the 1992 British general election panel survey. We suggest sample size adjustments for surveys when non-ignorable non-response is expected.  相似文献   

2.
Summary.  Social data often contain missing information. The problem is inevitably severe when analysing historical data. Conventionally, researchers analyse complete records only. Listwise deletion not only reduces the effective sample size but also may result in biased estimation, depending on the missingness mechanism. We analyse household types by using population registers from ancient China (618–907 AD) by comparing a simple classification, a latent class model of the complete data and a latent class model of the complete and partially missing data assuming four types of ignorable and non-ignorable missingness mechanisms. The findings show that either a frequency classification or a latent class analysis using the complete records only yielded biased estimates and incorrect conclusions in the presence of partially missing data of a non-ignorable mechanism. Although simply assuming ignorable or non-ignorable missing data produced consistently similarly higher estimates of the proportion of complex households, a specification of the relationship between the latent variable and the degree of missingness by a row effect uniform association model helped to capture the missingness mechanism better and improved the model fit.  相似文献   

3.
When analyzing incomplete longitudinal clinical trial data, it is often inappropriate to assume that the occurrence of missingness is at random, especially in cases where visits are entirely missed. We present a framework that simultaneously models multivariate incomplete longitudinal data and a non-ignorable missingness mechanism using a Bayesian approach. A criterion measure is presented for comparing models. We demonstrate the feasibility of the methodology through reanalysis of two of the longitudinal measures from a clinical trial of penicillamine treatment for scleroderma patients. We compare the results for univariate and bivariate, ignorable and non-ignorable missingness models.  相似文献   

4.
Summary. Missing observations are a common problem that complicate the analysis of clustered data. In the Connecticut child surveys of childhood psychopathology, it was possible to identify reasons why outcomes were not observed. Of note, some of these causes of missingness may be assumed to be ignorable , whereas others may be non-ignorable . We consider logistic regression models for incomplete bivariate binary outcomes and propose mixture models that permit estimation assuming that there are two distinct types of missingness mechanisms: one that is ignorable; the other non-ignorable. A feature of the mixture modelling approach is that additional analyses to assess the sensitivity to assumptions about the missingness are relatively straightforward to incorporate. The methods were developed for analysing data from the Connecticut child surveys, where there are missing informant reports of child psychopathology and different reasons for missingness can be distinguished.  相似文献   

5.
Missing response problem is ubiquitous in survey sampling, medical, social science and epidemiology studies. It is well known that non-ignorable missing is the most difficult missing data problem where the missing of a response depends on its own value. In statistical literature, unlike the ignorable missing data problem, not many papers on non-ignorable missing data are available except for the full parametric model based approach. In this paper we study a semiparametric model for non-ignorable missing data in which the missing probability is known up to some parameters, but the underlying distributions are not specified. By employing Owen (1988)’s empirical likelihood method we can obtain the constrained maximum empirical likelihood estimators of the parameters in the missing probability and the mean response which are shown to be asymptotically normal. Moreover the likelihood ratio statistic can be used to test whether the missing of the responses is non-ignorable or completely at random. The theoretical results are confirmed by a simulation study. As an illustration, the analysis of a real AIDS trial data shows that the missing of CD4 counts around two years are non-ignorable and the sample mean based on observed data only is biased.  相似文献   

6.
Summary.  The paper develops a data augmentation method to estimate the distribution function of a variable, which is partially observed, under a non-ignorable missing data mechanism, and where surrogate data are available. An application to the estimation of hourly pay distributions using UK Labour Force Survey data provides the main motivation. In addition to considering a standard parametric data augmentation method, we consider the use of hot deck imputation methods as part of the data augmentation procedure to improve the robustness of the method. The method proposed is compared with standard methods that are based on an ignorable missing data mechanism, both in a simulation study and in the Labour Force Survey application. The focus is on reducing bias in point estimation, but variance estimation using multiple imputation is also considered briefly.  相似文献   

7.
Existence of missing values is an inseparable part of longitudinal studies in epidemiology, medical and clinical studies. Usually researchers, for simplicity, ignore the missingness mechanism while, ignoring a not at random mechanism may lead to misleading results. In this paper, we use a Bayesian paradigm for fitting selection model of Heckman, which allows the non-ignorable missingness for longitudinal data. Also, we use reversible-jump Markov chain Monte Carlo to allow the model to choose between non-ignorable and ignorable structures for missingness mechanism, and show how the selection can be incorporated. Some simulation studies are performed for illustration of the proposed approach. The approach is also used for analyzing two real data sets.  相似文献   

8.
Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self-regulation and was evaluated by a randomized longitudinal study.The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern-mixture model to evaluate the outcome of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern-mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters.We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non-ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis.  相似文献   

9.
We propose a method for estimating parameters in generalized linear models with missing covariates and a non-ignorable missing data mechanism. We use a multinomial model for the missing data indicators and propose a joint distribution for them which can be written as a sequence of one-dimensional conditional distributions, with each one-dimensional conditional distribution consisting of a logistic regression. We allow the covariates to be either categorical or continuous. The joint covariate distribution is also modelled via a sequence of one-dimensional conditional distributions, and the response variable is assumed to be completely observed. We derive the E- and M-steps of the EM algorithm with non-ignorable missing covariate data. For categorical covariates, we derive a closed form expression for the E- and M-steps of the EM algorithm for obtaining the maximum likelihood estimates (MLEs). For continuous covariates, we use a Monte Carlo version of the EM algorithm to obtain the MLEs via the Gibbs sampler. Computational techniques for Gibbs sampling are proposed and implemented. The parametric form of the assumed missing data mechanism itself is not `testable' from the data, and thus the non-ignorable modelling considered here can be viewed as a sensitivity analysis concerning a more complicated model. Therefore, although a model may have `passed' the tests for a certain missing data mechanism, this does not mean that we have captured, even approximately, the correct missing data mechanism. Hence, model checking for the missing data mechanism and sensitivity analyses play an important role in this problem and are discussed in detail. Several simulations are given to demonstrate the methodology. In addition, a real data set from a melanoma cancer clinical trial is presented to illustrate the methods proposed.  相似文献   

10.
Latent Markov models (LMMs) are widely used in the analysis of heterogeneous longitudinal data. However, most existing LMMs are developed in fully observed data without missing entries. The main objective of this study is to develop a Bayesian approach for analyzing the LMMs with non-ignorable missing data. Bayesian methods for estimation and model comparison are discussed. The empirical performance of the proposed methodology is evaluated through simulation studies. An application to a data set derived from National Longitudinal Survey of Youth 1997 is presented.  相似文献   

11.
We propose a method for estimating parameters in generalized linear models when the outcome variable is missing for some subjects and the missing data mechanism is non-ignorable. We assume throughout that the covariates are fully observed. One possible method for estimating the parameters is maximum likelihood with a non-ignorable missing data model. However, caution must be used when fitting non-ignorable missing data models because certain parameters may be inestimable for some models. Instead of fitting a non-ignorable model, we propose the use of auxiliary information in a likelihood approach to reduce the bias, without having to specify a non-ignorable model. The method is applied to a mental health study.  相似文献   

12.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

13.
ABSTRACT

In this article, a finite mixture model of hurdle Poisson distribution with missing outcomes is proposed, and a stochastic EM algorithm is developed for obtaining the maximum likelihood estimates of model parameters and mixing proportions. Specifically, missing data is assumed to be missing not at random (MNAR)/non ignorable missing (NINR) and the corresponding missingness mechanism is modeled through probit regression. To improve the algorithm efficiency, a stochastic step is incorporated into the E-step based on data augmentation, whereas the M-step is solved by the method of conditional maximization. A variation on Bayesian information criterion (BIC) is also proposed to compare models with different number of components with missing values. The considered model is a general model framework and it captures the important characteristics of count data analysis such as zero inflation/deflation, heterogeneity as well as missingness, providing us with more insight into the data feature and allowing for dispersion to be investigated more fully and correctly. Since the stochastic step only involves simulating samples from some standard distributions, the computational burden is alleviated. Once missing responses and latent variables are imputed to replace the conditional expectation, our approach works as part of a multiple imputation procedure. A simulation study and a real example illustrate the usefulness and effectiveness of our methodology.  相似文献   

14.
Summary.  We propose a model of transitions into and out of low paid employment that accounts for non-ignorable panel dropout, employment retention and base year low pay status ('initial conditions'). The model is fitted to data for men from the British Household Panel Survey. Initial conditions and employment retention are found to be non-ignorable selection processes. Whether panel dropout is found to be ignorable depends on how item non-response on pay is treated. Notwithstanding these results, we also find that models incorporating a simpler approach to accounting for non-ignorable selections provide estimates of covariate effects that differ very little from the estimates from the general model.  相似文献   

15.
Inequality-restricted hypotheses testing methods containing multivariate one-sided testing methods are useful in practice, especially in multiple comparison problems. In practice, multivariate and longitudinal data often contain missing values since it may be difficult to observe all values for each variable. However, although missing values are common for multivariate data, statistical methods for multivariate one-sided tests with missing values are quite limited. In this article, motivated by a dataset in a recent collaborative project, we develop two likelihood-based methods for multivariate one-sided tests with missing values, where the missing data patterns can be arbitrary and the missing data mechanisms may be non-ignorable. Although non-ignorable missing data are not testable based on observed data, statistical methods addressing this issue can be used for sensitivity analysis and might lead to more reliable results, since ignoring informative missingness may lead to biased analysis. We analyse the real dataset in details under various possible missing data mechanisms and report interesting findings which are previously unavailable. We also derive some asymptotic results and evaluate our new tests using simulations.  相似文献   

16.
Multiple imputation is a common approach for dealing with missing values in statistical databases. The imputer fills in missing values with draws from predictive models estimated from the observed data, resulting in multiple, completed versions of the database. Researchers have developed a variety of default routines to implement multiple imputation; however, there has been limited research comparing the performance of these methods, particularly for categorical data. We use simulation studies to compare repeated sampling properties of three default multiple imputation methods for categorical data, including chained equations using generalized linear models, chained equations using classification and regression trees, and a fully Bayesian joint distribution based on Dirichlet process mixture models. We base the simulations on categorical data from the American Community Survey. In the circumstances of this study, the results suggest that default chained equations approaches based on generalized linear models are dominated by the default regression tree and Bayesian mixture model approaches. They also suggest competing advantages for the regression tree and Bayesian mixture model approaches, making both reasonable default engines for multiple imputation of categorical data. Supplementary material for this article is available online.  相似文献   

17.
We present an algorithm for multivariate robust Bayesian linear regression with missing data. The iterative algorithm computes an approximative posterior for the model parameters based on the variational Bayes (VB) method. Compared to the EM algorithm, the VB method has the advantage that the variance for the model parameters is also computed directly by the algorithm. We consider three families of Gaussian scale mixture models for the measurements, which include as special cases the multivariate t distribution, the multivariate Laplace distribution, and the contaminated normal model. The observations can contain missing values, assuming that the missing data mechanism can be ignored. A Matlab/Octave implementation of the algorithm is presented and applied to solve three reference examples from the literature.  相似文献   

18.
Three-mode analysis is a generalization of principal component analysis to three-mode data. While two-mode data consist of cases that are measured on several variables, three-mode data consist of cases that are measured on several variables at several occasions. As any other statistical technique, the results of three-mode analysis may be influenced by missing data. Three-mode software packages generally use the expectation–maximization (EM) algorithm for dealing with missing data. However, there are situations in which the EM algorithm is expected to break down. Alternatively, multiple imputation may be used for dealing with missing data. In this study we investigated the influence of eight different multiple-imputation methods on the results of three-mode analysis, more specifically, a Tucker2 analysis, and compared the results with those of the EM algorithm. Results of the simulations show that multilevel imputation with the mode with the most levels nested within cases and the mode with the least levels represented as variables gives the best results for a Tucker2 analysis. Thus, this may be a good alternative for the EM algorithm in handling missing data in a Tucker2 analysis.  相似文献   

19.
Missing data form a ubiquitous problem in scientific research, especially since most statistical analyses require complete data. To evaluate the performance of methods dealing with missing data, researchers perform simulation studies. An important aspect of these studies is the generation of missing values in a simulated, complete data set: the amputation procedure. We investigated the methodological validity and statistical nature of both the current amputation practice and a newly developed and implemented multivariate amputation procedure. We found that the current way of practice may not be appropriate for the generation of intuitive and reliable missing data problems. The multivariate amputation procedure, on the other hand, generates reliable amputations and allows for a proper regulation of missing data problems. The procedure has additional features to generate any missing data scenario precisely as intended. Hence, the multivariate amputation procedure is an efficient method to accurately evaluate missing data methodology.  相似文献   

20.
Summary.  The main statistical problem in many epidemiological studies which involve repeated measurements of surrogate markers is the frequent occurrence of missing data. Standard likelihood-based approaches like the linear random-effects model fail to give unbiased estimates when data are non-ignorably missing. In human immunodeficiency virus (HIV) type 1 infection, two markers which have been widely used to track progression of the disease are CD4 cell counts and HIV–ribonucleic acid (RNA) viral load levels. Repeated measurements of these markers tend to be informatively censored, which is a special case of non-ignorable missingness. In such cases, we need to apply methods that jointly model the observed data and the missingness process. Despite their high correlation, longitudinal data of these markers have been analysed independently by using mainly random-effects models. Touloumi and co-workers have proposed a model termed the joint multivariate random-effects model which combines a linear random-effects model for the underlying pattern of the marker with a log-normal survival model for the drop-out process. We extend the joint multivariate random-effects model to model simultaneously the CD4 cell and viral load data while adjusting for informative drop-outs due to disease progression or death. Estimates of all the model's parameters are obtained by using the restricted iterative generalized least squares method or a modified version of it using the EM algorithm as a nested algorithm in the case of censored survival data taking also into account non-linearity in the HIV–RNA trend. The method proposed is evaluated and compared with simpler approaches in a simulation study. Finally the method is applied to a subset of the data from the 'Concerted action on seroconversion to AIDS and death in Europe' study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号