首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoregressive models with switching regime are a frequently used class of nonlinear time series models, which are popular in finance, engineering, and other fields. We consider linear switching autoregressions in which the intercept and variance possibly switch simultaneously, while the autoregressive parameters are structural and hence the same in all states, and we propose quasi‐likelihood‐based tests for a regime switch in this class of models. Our motivation is from financial time series, where one expects states with high volatility and low mean together with states with low volatility and higher mean. We investigate the performance of our tests in a simulation study, and give an application to a series of IBM monthly stock returns. The Canadian Journal of Statistics 40: 427–446; 2012 © 2012 Statistical Society of Canada  相似文献   

2.
Consider the model yt = ρnyt ? 1 + ut, t = 1, …, n with ρn = 1 + c/kn and ut = σ1?tI{t ? k0} + σ2?tI{t > k0}, where c is a non-zero constant, σ1 and σ2 are two positive constants, I{ · } denotes the indicator function, kn is a sequence of positive constants increasing to ∞ such that kn = o(n), and {?t, t ? 1} is a sequence of i.i.d. random variables with mean zero and variance one. We derive the limiting distributions of the least squares estimator of ρn and the t-ratio of ρn for the above model in this paper. Some pivotal limit theorems are also obtained. Moreover, Monte Carlo experiments are conducted to examine the estimators under finite sample situations. Our theoretical results are supported by Monte Carlo experiments.  相似文献   

3.
This paper extends the results of canonical correlation analysis of Anderson [2002. Canonical correlation analysis and reduced-rank regression in autoregressive models. Ann. Statist. 30, 1134–1154] to a vector AR(1) process with a vector ARCH(1) innovations. We obtain the limiting distributions of the sample matrices, the canonical correlations and the canonical vectors of the process. The extension is important because many time series in economics and finance exhibit conditional heteroscedasticity. We also use simulation to demonstrate the effects of ARCH innovations on the canonical correlation analysis in finite sample. Both the limiting distributions and simulation results show that overlooking the ARCH effects in canonical correlation analysis can easily lead to erroneous inference.  相似文献   

4.
We propose optimal procedures to achieve the goal of partitioning k multivariate normal populations into two disjoint subsets with respect to a given standard vector. Definition of good or bad multivariate normal populations is given according to their Mahalanobis distances to a known standard vector as being small or large. Partitioning k multivariate normal populations is reduced to partitioning k non-central Chi-square or non-central F distributions with respect to the corresponding non-centrality parameters depending on whether the covariance matrices are known or unknown. The minimum required sample size for each population is determined to ensure that the probability of correct decision attains a certain level. An example is given to illustrate our procedures.  相似文献   

5.
This article considers the problem of testing for an explosive bubble in financial data in the presence of time-varying volatility. We propose a weighted least squares-based variant of the Phillips et al.) test for explosive autoregressive behavior. We find that such an approach has appealing asymptotic power properties, with the potential to deliver substantially greater power than the established OLS-based approach for many volatility and bubble settings. Given that the OLS-based test can outperform the weighted least squares-based test for other volatility and bubble specifications, we also suggest a union of rejections procedure that succeeds in capturing the better power available from the two constituent tests for a given alternative. Our approach involves a nonparametric kernel-based volatility function estimator for computation of the weighted least squares-based statistic, together with the use of a wild bootstrap procedure applied jointly to both individual tests, delivering a powerful testing procedure that is asymptotically size-robust to a wide range of time-varying volatility specifications.  相似文献   

6.
A central limit theorem is provided for the least squares estimates of the autoregressive parameters in an ARIMA process with strong mixing moving average part.  相似文献   

7.
Suppose that there are independent samples available from several multivariate normal populations with the same mean vector m? but possibly different covariance matrices. The problem of developing a confidence region for the common mean vector based on all the samples is considered. An exact confidence region centered at a generalized version of the well-known Graybill-Deal estimator of m? is developed, and a multiple comparison procedure based on this confidence region is outlined. Necessary percentile points for constructing the confidence region are given for the two-sample case. For more than two samples, a convenient method of approximating the percentile points is suggested. Also, a numerical example is presented to illustrate the methods. Further, for the bivariate case, the proposed confidence region and the ones based on individual samples are compared numerically with respect to their expected areas. The numerical results indicate that the new confidence region is preferable to the single-sample versions for practical use.  相似文献   

8.
For the linear regression with AR(1) errors model, the robust generalized and feasible generalized estimators of Lai et al. (2003) of regression parameters are shown to have the desired property of a robust Gauss Markov theorem. This is done by showing that these two estimators are the best among classes of linear trimmed means. Monte Carlo and data analysis for this technique have been performed.  相似文献   

9.
We consider the problem of robust M-estimation of a vector of regression parameters, when the errors are dependent. We assume a weakly stationary, but otherwise quite general dependence structure. Our model allows for the representation of the correlations of any time series of finite length. We first construct initial estimates of the regression, scale, and autocorrelation parameters. The initial autocorrelation estimates are used to transform the model to one of approximate independence. In this transformed model, final one-step M-estimates are calculated. Under appropriate assumptions, the regression estimates so obtained are asymptotically normal, with a variance-covariance structure identical to that in the case in which the autocorrelations are known a priori. The results of a simulation study are given. Two versions of our estimator are compared with the L1 -estimator and several Huber-type M-estimators. In terms of bias and mean squared error, the estimators are generally very close. In terms of the coverage probabilities of confidence intervals, our estimators appear to be quite superior to both the L1-estimator and the other estimators. The simulations also indicate that the approach to normality is quite fast.  相似文献   

10.
Motivated by time series of atmospheric concentrations of certain pollutants the authors develop bent‐cable regression for autocorrelated errors. Bent‐cable regression extends the popular piecewise linear (broken‐stick) model, allowing for a smooth change region of any non‐negative width. Here the authors consider autoregressive noise added to a bent‐cable mean structure, with unknown regression and time series parameters. They develop asymptotic theory for conditional least‐squares estimation in a triangular array framework, wherein each segment of the bent cable contains an increasing number of observations while the autoregressive order remains constant as the sample size grows. They explore the theory in a simulation study, develop implementation details, apply the methodology to the motivating pollutant dataset, and provide a scientific interpretation of the bent‐cable change point not discussed previously. The Canadian Journal of Statistics 38: 386–407; 2010 © 2010 Statistical Society of Canada  相似文献   

11.
The process comparing the empirical cumulative distribution function of the sample with a parametric estimate of the cumulative distribution function is known as the empirical process with estimated parameters and has been extensively employed in the literature for goodness‐of‐fit testing. The simplest way to carry out such goodness‐of‐fit tests, especially in a multivariate setting, is to use a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters, or the dimension of the data increase. An alternative resampling technique based on a fast weighted bootstrap is proposed in this paper, and is studied both theoretically and empirically. The outcome of this work is a generic and computationally efficient multiplier goodness‐of‐fit procedure that can be used as a large‐sample alternative to the parametric bootstrap. In order to approximately determine how large the sample size needs to be for the parametric and weighted bootstraps to have roughly equivalent powers, extensive Monte Carlo experiments are carried out in dimension one, two and three, and for models containing up to nine parameters. The computational gains resulting from the use of the proposed multiplier goodness‐of‐fit procedure are illustrated on trivariate financial data. A by‐product of this work is a fast large‐sample goodness‐of‐fit procedure for the bivariate and trivariate t distribution whose degrees of freedom are fixed. The Canadian Journal of Statistics 40: 480–500; 2012 © 2012 Statistical Society of Canada  相似文献   

12.
13.
Hartley's test for homogeneity of k normal‐distribution variances is based on the ratio between the maximum sample variance and the minimum sample variance. In this paper, the author uses the same statistic to test for equivalence of k variances. Equivalence is defined in terms of the ratio between the maximum and minimum population variances, and one concludes equivalence when Hartley's ratio is small. Exact critical values for this test are obtained by using an integral expression for the power function and some theoretical results about the power function. These exact critical values are available both when sample sizes are equal and when sample sizes are unequal. One related result in the paper is that Hartley's test for homogeneity of variances is no longer unbiased when the sample sizes are unequal. The Canadian Journal of Statistics 38: 647–664; 2010 © 2010 Statistical Society of Canada  相似文献   

14.
We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein–Uhlenbeck stochastic differential equation driven by a Lévy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model.  相似文献   

15.
16.
Integer-valued time series models and their applications have attracted a lot of attention over the last years. In this paper, we introduce a class of observation-driven random coefficient integer-valued autoregressive processes based on negative binomial thinning, where the autoregressive parameter depends on the observed values of the previous moment. Basic probability and statistics properties of the process are established. The unknown parameters are estimated by the conditional least squares and empirical likelihood methods. Specially, we consider three aspects of the empirical likelihood method: maximum empirical likelihood estimate, confidence region and EL test. The performance of the two estimation methods is compared through simulation studies. Finally, an application to a real data example is provided.  相似文献   

17.
18.
Consider a process satisfying a stochastic differential equation with unknown drift parameter, and suppose that discrete observations are given. It is known that a simple least squares estimator (LSE) can be consistent but numerically unstable in the sense of large standard deviations under finite samples when the noise process has jumps. We propose a filter to cut large shocks from data and construct the same LSE from data selected by the filter. The proposed estimator can be asymptotically equivalent to the usual LSE, whose asymptotic distribution strongly depends on the noise process. However, in numerical study, it looked asymptotically normal in an example where filter was chosen suitably, and the noise was a Lévy process. We will try to justify this phenomenon mathematically, under certain restricted assumptions.  相似文献   

19.
Based on two-sample rank order statistics, a repeated significance testing procedure for a multi-sample location problem is considered. The asymptotic distribution theory of the proposed tests is given under the null hypothesis as well as under local alternatives. A Bahadur efficiency result of the repeated significance test relative to the terminal test based solely on the target sample size is presented. In the adaptation of the proposed tests to multiple comparisons, an asymptotically equivalent test statistic in terms of the rank estimators of the location parameters is derived from which the Scheffé method of multiple comparisons can be obtained in a convinient way.  相似文献   

20.
Test statistics for checking the independence between the innovations of several time series are developed. The time series models considered allow for general specifications for the conditional mean and variance functions that could depend on common explanatory variables. In testing for independence between more than two time series, checking pairwise independence does not lead to consistent procedures. Thus a finite family of empirical processes relying on multivariate lagged residuals are constructed, and we derive their asymptotic distributions. In order to obtain simple asymptotic covariance structures, Möbius transformations of the empirical processes are studied, and simplifications occur. Under the null hypothesis of independence, we show that these transformed processes are asymptotically Gaussian, independent, and with tractable covariance functions not depending on the estimated parameters. Various procedures are discussed, including Cramér–von Mises test statistics and tests based on non‐parametric measures. The ranks of the residuals are considered in the new methods, giving test statistics which are asymptotically margin‐free. Generalized cross‐correlations are introduced, extending the concept of cross‐correlation to an arbitrary number of time series; portmanteau procedures based on them are discussed. In order to detect the dependence visually, graphical devices are proposed. Simulations are conducted to explore the finite sample properties of the methodology, which is found to be powerful against various types of alternatives when the independence is tested between two and three time series. An application is considered, using the daily log‐returns of Apple, Intel and Hewlett‐Packard traded on the Nasdaq financial market. The Canadian Journal of Statistics 40: 447–479; 2012 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号