首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When multilevel models are estimated from survey data derived using multistage sampling, unequal selection probabilities at any stage of sampling may induce bias in standard estimators, unless the sources of the unequal probabilities are fully controlled for in the covariates. This paper proposes alternative ways of weighting the estimation of a two-level model by using the reciprocals of the selection probabilities at each stage of sampling. Consistent estimators are obtained when both the sample number of level 2 units and the sample number of level 1 units within sampled level 2 units increase. Scaling of the weights is proposed to improve the properties of the estimators and to simplify computation. Variance estimators are also proposed. In a limited simulation study the scaled weighted estimators are found to perform well, although non-negligible bias starts to arise for informative designs when the sample number of level 1 units becomes small. The variance estimators perform extremely well. The procedures are illustrated using data from the survey of psychiatric morbidity.  相似文献   

2.
Biased sampling occurs often in observational studies. With one biased sample, the problem of nonparametrically estimating both a target density function and a selection bias function is unidentifiable. This paper studies the nonparametric estimation problem when there are two biased samples that have some overlapping observations (i.e. recaptures) from a finite population. Since an intelligent subject sampled previously may experience a memory effect if sampled again, two general 2-stage models that incorporate both a selection bias and a possible memory effect are proposed. Nonparametric estimators of the target density, selection bias, and memory functions, as well as the population size are developed. Asymptotic properties of these estimators are studied and confidence bands for the selection function and memory function are provided. Our procedures are compared with those ignoring the memory effect or the selection bias in finite sample situations. A nonparametric model selection procedure is also given for choosing a model from the two 2-stage models and a mixture of these two models. Our procedures work well with or without a memory effect, and with or without a selection bias. The paper concludes with an application to a real survey data set.  相似文献   

3.
Length-biased sampling appears in many observational studies, including epidemiological studies, labor economics and cancer screening trials. To accommodate sampling bias, which can lead to substantial estimation bias if ignored, we propose a class of doubly-weighted rank-based estimating equations under the accelerated failure time model. The general weighting structures considered in our estimating equations allow great flexibility and include many existing methods as special cases. Different approaches for constructing estimating equations are investigated, and the estimators are shown to be consistent and asymptotically normal. Moreover, we propose efficient computational procedures to solve the estimating equations and to estimate the variances of the estimators. Simulation studies show that the proposed estimators outperform the existing estimators. Moreover, real data from a dementia study and a Spanish unemployment duration study are analyzed to illustrate the proposed method.  相似文献   

4.
When variable selection with stepwise regression and model fitting are conducted on the same data set, competition for inclusion in the model induces a selection bias in coefficient estimators away from zero. In proportional hazards regression with right-censored data, selection bias inflates the absolute value of parameter estimate of selected parameters, while the omission of other variables may shrink coefficients toward zero. This paper explores the extent of the bias in parameter estimates from stepwise proportional hazards regression and proposes a bootstrap method, similar to those proposed by Miller (Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, 2002) for linear regression, to correct for selection bias. We also use bootstrap methods to estimate the standard error of the adjusted estimators. Simulation results show that substantial biases could be present in uncorrected stepwise estimators and, for binary covariates, could exceed 250% of the true parameter value. The simulations also show that the conditional mean of the proposed bootstrap bias-corrected parameter estimator, given that a variable is selected, is moved closer to the unconditional mean of the standard partial likelihood estimator in the chosen model, and to the population value of the parameter. We also explore the effect of the adjustment on estimates of log relative risk, given the values of the covariates in a selected model. The proposed method is illustrated with data sets in primary biliary cirrhosis and in multiple myeloma from the Eastern Cooperative Oncology Group.  相似文献   

5.
Randomized response is an interview technique designed to eliminate response bias when sensitive questions are asked. In this paper, we present a logistic regression model on randomized response data when the covariates on some subjects are missing at random. In particular, we propose Horvitz and Thompson (1952)-type weighted estimators by using different estimates of the selection probabilities. We present large sample theory for the proposed estimators and show that they are more efficient than the estimator using the true selection probabilities. Simulation results support theoretical analysis. We also illustrate the approach using data from a survey of cable TV.  相似文献   

6.
Often in observational studies of time to an event, the study population is a biased (i.e., unrepresentative) sample of the target population. In the presence of biased samples, it is common to weight subjects by the inverse of their respective selection probabilities. Pan and Schaubel (Can J Stat 36:111–127, 2008) recently proposed inference procedures for an inverse selection probability weighted (ISPW) Cox model, applicable when selection probabilities are not treated as fixed but estimated empirically. The proposed weighting procedure requires auxiliary data to estimate the weights and is computationally more intense than unweighted estimation. The ignorability of sample selection process in terms of parameter estimators and predictions is often of interest, from several perspectives: e.g., to determine if weighting makes a significant difference to the analysis at hand, which would in turn address whether the collection of auxiliary data is required in future studies; to evaluate previous studies which did not correct for selection bias. In this article, we propose methods to quantify the degree of bias corrected by the weighting procedure in the partial likelihood and Breslow-Aalen estimators. Asymptotic properties of the proposed test statistics are derived. The finite-sample significance level and power are evaluated through simulation. The proposed methods are then applied to data from a national organ failure registry to evaluate the bias in a post-kidney transplant survival model.  相似文献   

7.
In this paper, proportion estimators and associated variance estimators are proposed for a binary variable with a concomitant variable based on modified ranked set sampling methods, which are extreme ranked set sampling (ERSS), median ranked set sampling (MRSS), percentile ranked set sampling (Per-RSS) and L ranked set sampling (LRSS) methods. The Monte Carlo simulation study is performed to compare the performance of the estimators based on bias, mean squared error, and relative efficiency for different levels of correlation coefficient, set and cycle sizes under normal and log-normal distributions. Moreover, the study is supported with real data application.  相似文献   

8.
In this paper, we propose a generalized class of estimators for finite population mean using two auxiliary variables in two-phase stratified sampling for non response. We identify 17 estimators as special cases of the proposed class of estimators. Expressions for the bias and mean squared error (MSE) of estimators are obtained up to first order of approximation. A data set is used for efficiency comparisons.  相似文献   

9.
Neoteric ranked set sampling (NRSS) is a recently developed sampling plan, derived from the well-known ranked set sampling (RSS) scheme. It has already been proved that NRSS provides more efficient estimators for population mean and variance compared to RSS and other sampling designs based on ranked sets. In this work, we propose and evaluate the performance of some two-stage sampling designs based on NRSS. Five different sampling schemes are proposed. Through an extensive Monte Carlo simulation study, we verified that all proposed sampling designs outperform RSS, NRSS, and the original double RSS design, producing estimators for the population mean with a lower mean square error. Furthermore, as with NRSS, two-stage NRSS estimators present some bias for asymmetric distributions. We complement the study with a discussion on the relative performance of the proposed estimators. Moreover, an additional simulation based on data of the diameter and height of pine trees is presented.  相似文献   

10.
We derived two methods to estimate the logistic regression coefficients in a meta-analysis when only the 'aggregate' data (mean values) from each study are available. The estimators we proposed are the discriminant function estimator and the reverse Taylor series approximation. These two methods of estimation gave similar estimators using an example of individual data. However, when aggregate data were used, the discriminant function estimators were quite different from the other two estimators. A simulation study was then performed to evaluate the performance of these two estimators as well as the estimator obtained from the model that simply uses the aggregate data in a logistic regression model. The simulation study showed that all three estimators are biased. The bias increases as the variance of the covariate increases. The distribution type of the covariates also affects the bias. In general, the estimator from the logistic regression using the aggregate data has less bias and better coverage probabilities than the other two estimators. We concluded that analysts should be cautious in using aggregate data to estimate the parameters of the logistic regression model for the underlying individual data.  相似文献   

11.
In this paper we explore the possibility to use a particular class of models, known as probabilistic expert systems, to define two classes of estimators of a contingency table in case of stratified sampling designs. The two classes are characterized by the different role of the sampling design: in the first, the sampling design is treated as an additional variable; in the second, it is used only for estimation purposes by means of the survey weights. The bias/variance trade off of these estimators is analyzed and the consequences of model misspecification are illustrated. Furthermore, it is shown that the Horvitz–Thompson estimator belongs to both classes of estimators. It comes out that the Horvitz–Thompson estimator is almost always inefficient but robust. Monte Carlo simulations illustrate the efficiency of the proposed estimators.  相似文献   

12.
Inference for a generalized linear model is generally performed using asymptotic approximations for the bias and the covariance matrix of the parameter estimators. For small experiments, these approximations can be poor and result in estimators with considerable bias. We investigate the properties of designs for small experiments when the response is described by a simple logistic regression model and parameter estimators are to be obtained by the maximum penalized likelihood method of Firth [Firth, D., 1993, Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38]. Although this method achieves a reduction in bias, we illustrate that the remaining bias may be substantial for small experiments, and propose minimization of the integrated mean square error, based on Firth's estimates, as a suitable criterion for design selection. This approach is used to find locally optimal designs for two support points.  相似文献   

13.
We consider the estimation of the expected sojourn time in a Markov renewal process under the data condition that only the counts of the exits from the states are available for fixed intervals of time. For analytical and illustrative purposes we concentrate on the two-state process case. We present least squares and method of moments estimators and compare their statistical properties both analytically and empirically. We also present modified estimators with improved properties based upon an overlapping interval sampling strategy. The major results indicate that the least squares estimator is biased in general with the bias depending on the size of the sampling interval and the first two moments of the sojourn time distribution function. The bias becomes negligible as the size of the sampling interval increases. Analytical and empirical results indicate that the method of moments estimator is less sensitive to the size of the sampling interval and has slightly better mean squared error properties than the least squares estimator.  相似文献   

14.
Variable selection in regression analysis is of importance because it can simplify model and enhance predictability. After variable selection, however, the resulting working model may be biased when it does not contain all of significant variables. As a result, the commonly used parameter estimation is either inconsistent or needs estimating high-dimensional nuisance parameter with very strong assumptions for consistency, and the corresponding confidence region is invalid when the bias is relatively large. We in this paper introduce a simulation-based procedure to reformulate a new model so as to reduce the bias of the working model, with no need to estimate high-dimensional nuisance parameter. The resulting estimators of the parameters in the working model are asymptotic normally distributed whether the bias is small or large. Furthermore, together with the empirical likelihood, we build simulation-based confidence regions for the parameters in the working model. The newly proposed estimators and confidence regions outperform existing ones in the sense of consistency.  相似文献   

15.
Sample selection and attrition are inherent in a range of treatment evaluation problems such as the estimation of the returns to schooling or training. Conventional estimators tackling selection bias typically rely on restrictive functional form assumptions that are unlikely to hold in reality. This paper shows identification of average and quantile treatment effects in the presence of the double selection problem into (i) a selective subpopulation (e.g., working—selection on unobservables) and (ii) a binary treatment (e.g., training—selection on observables) based on weighting observations by the inverse of a nested propensity score that characterizes either selection probability. Weighting estimators based on parametric propensity score models are applied to female labor market data to estimate the returns to education.  相似文献   

16.
In this paper, we prove that two multiplicative bias correction techniques (MBC) can be applied for discrete kernels in the context of probability mass function estimation. First, some properties of the MBC discrete kernel estimators (bias, variance and mean integrated squared error) are investigated. Second, the popular cross-validation technique is adapted for bandwidth selection. Finally, a simulation study and a real data application for discrete data illustrate the performance of the MBC estimators based on dirac discrete uniform and triangular discrete kernels.  相似文献   

17.
This paper provides an integrated approach for estimating parametric models from endogenous stratified samples. We discuss several alternative ways of removing the bias of the moment indicators usually employed under random sampling for estimating the parameters of the structural model and the proportion of the strata in the population. Those alternatives give rise to a number of moment-based estimators that are appropriate for both cases where the marginal strata probabilities are known and unknown. The derivation of our estimators is very simple and intuitive and incorporates as particular cases most of the likelihood-based estimators previously suggested by other authors.  相似文献   

18.
SUMMARY We compare properties of parameter estimators under Akaike information criterion (AIC) and 'consistent' AIC (CAIC) model selection in a nested sequence of open population capture-recapture models. These models consist of product multinomials, where the cell probabilities are parameterized in terms of survival ( ) and capture ( p ) i i probabilities for each time interval i . The sequence of models is derived from 'treatment' effects that might be (1) absent, model H ; (2) only acute, model H ; or (3) acute and 0 2 p chronic, lasting several time intervals, model H . Using a 35 factorial design, 1000 3 repetitions were simulated for each of 243 cases. The true number of parameters ranged from 7 to 42, and the sample size ranged from approximately 470 to 55 000 per case. We focus on the quality of the inference about the model parameters and model structure that results from the two selection criteria. We use achieved confidence interval coverage as an integrating metric to judge what constitutes a 'properly parsimonious' model, and contrast the performance of these two model selection criteria for a wide range of models, sample sizes, parameter values and study interval lengths. AIC selection resulted in models in which the parameters were estimated with relatively little bias. However, these models exhibited asymptotic sampling variances that were somewhat too small, and achieved confidence interval coverage that was somewhat below the nominal level. In contrast, CAIC-selected models were too simple, the parameter estimators were often substantially biased, the asymptotic sampling variances were substantially too small and the achieved coverage was often substantially below the nominal level. An example case illustrates a pattern: with 20 capture occasions, 300 previously unmarked animals are released at each occasion, and the survival and capture probabilities in the control group on each occasion were 0.9 and 0.8 respectively using model H . There was a strong acute treatment effect 3 on the first survival ( ) and first capture probability ( p ), and smaller, chronic effects 1 2 on the second and third survival probabilities ( and ) as well as on the second capture 2 3 probability ( p ); the sample size for each repetition was approximately 55 000. CAIC 3 selection led to a model with exactly these effects in only nine of the 1000 repetitions, compared with 467 times under AIC selection. Under CAIC selection, even the two acute effects were detected only 555 times, compared with 998 for AIC selection. AIC selection exhibited a balance between underfitted and overfitted models (270 versus 263), while CAIC tended strongly to select underfitted models. CAIC-selected models were overly parsimonious and poor as a basis for statistical inferences about important model parameters or structure. We recommend the use of the AIC and not the CAIC for analysis and inference from capture-recapture data sets.  相似文献   

19.
In finite population sampling, often a distinction is made between model-and design-based estimators of the parameters of interest (like the population total, population variance, etc.). The model-based estimators depend on the (known) parameters of the model, while the design-based estimators depend on the (known) selection probabilities of the different units in the population. It is shown in this paper that the two approaches are not necessarily incompatible, and indeed can often lead to the same estimator. Our ideas are illustrated with the Horvitz-Thompson, and the generalized Horvitz-Thompson estimator. These estimators are identified as hierarchical Bays estimators. Also, certain “stepwise-Bayes” estimators of Vardeman and Meeden (J. Stat. Inf. (1983), V7, pp 329-341) are unified from a hierarchical Bayes point of view.  相似文献   

20.
In recent years, there has been an increased interest in combining probability and nonprobability samples. Nonprobability sample are cheaper and quicker to conduct but the resulting estimators are vulnerable to bias as the participation probabilities are unknown. To adjust for the potential bias, estimation procedures based on parametric or nonparametric models have been discussed in the literature. However, the validity of the resulting estimators relies heavily on the validity of the underlying models. Also, nonparametric approaches may suffer from the curse of dimensionality and poor efficiency. We propose a data integration approach by combining multiple outcome regression models and propensity score models. The proposed approach can be used for estimating general parameters including totals, means, distribution functions, and percentiles. The resulting estimators are multiply robust in the sense that they remain consistent if all but one model are misspecified. The asymptotic properties of point and variance estimators are established. The results from a simulation study show the benefits of the proposed method in terms of bias and efficiency. Finally, we apply the proposed method using data from the Korea National Health and Nutrition Examination Survey and data from the National Health Insurance Sharing Services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号